WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/9998926,
	  title     = {Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine},
	  author    = {Ajay V. Kolhe and  R. E. Shelke and  S. S. Khandare},
	  country	= {},
	  institution	= {},
	  abstract     = {Various biomass based resources, which can be used
as an extender, or a complete substitute of diesel fuel may have very
significant role in the development of agriculture, industrial and
transport sectors in the energy crisis. Use of Karanja oil methyl ester
biodiesel in a CI DI engine was found highly compatible with engine
performance along with lower exhaust emission as compared to
diesel fuel but with slightly higher NOx emission and low wear
characteristics. The combustion related properties of vegetable oils
are somewhat similar to diesel oil. Neat vegetable oils or their blends
with diesel, however, pose various long-term problems in
compression ignition engines. These undesirable features of
vegetable oils are because of their inherent properties like high
viscosity, low volatility, and polyunsaturated character. Pongamia
methyl ester (PME) was prepared by transesterification process using
methanol for long term engine operations. The physical and
combustion-related properties of the fuels thus developed were found
to be closer to that of the diesel. A neat biodiesel (PME) was selected
as a fuel for the tribological study of biofuels.
Two similar new engines were completely disassembled and
subjected to dimensioning of various vital moving parts and then
subjected to long-term endurance tests on neat biodiesel and diesel
respectively. After completion of the test, both the engines were
again disassembled for physical inspection and wear measurement of
various vital parts. The lubricating oil samples drawn from both
engines were subjected to atomic absorption spectroscopy (AAS) for
measurement of various wear metal traces present. The additional
lubricating property of biodiesel fuel due to higher viscosity as
compared to diesel fuel resulted in lower wear of moving parts and
thus improved the engine durability with a bio-diesel fuel. Results
reported from AAS tests confirmed substantially lower wear and thus
improved life for biodiesel operated engines.
},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {8},
	  number    = {2},
	  year      = {2014},
	  pages     = {489 - 494},
	  ee        = {https://publications.waset.org/pdf/9998926},
	  url   	= {https://publications.waset.org/vol/86},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 86, 2014},
	}