Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Utilization of 3-N-trimethylamino-1-propanol by Rhodococcus sp. strain A4 isolated from Natural Soil
Authors: Isam A. Mohamed Ahmed, Jiro Arima, Tsuyoshi Ichiyanagi, Emi Sakuno, Nobuhiro Mori
Abstract:
The aim of this study was to screen for microorganism that able to utilize 3-N-trimethylamino-1-propanol (homocholine) as a sole source of carbon and nitrogen. The aerobic degradation of homocholine has been found by a gram-positive Rhodococcus sp. bacterium isolated from soil. The isolate was identified as Rhodococcus sp. strain A4 based on the phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The cells of the isolated strain grown on both basal-TMAP and nutrient agar medium displayed elementary branching mycelia fragmented into irregular rod and coccoid elements. Comparative 16S rDNA sequencing studies indicated that the strain A4 falls into the Rhodococcus erythropolis subclade and forms a monophyletic group with the type-strains of R. opacus, and R. wratislaviensis. Metabolites analysis by capillary electrophoresis, fast atom bombardment-mass spectrometry, and gas chromatography- mass spectrometry, showed trimethylamine (TMA) as the major metabolite beside β-alanine betaine and trimethylaminopropionaldehyde. Therefore, the possible degradation pathway of trimethylamino propanol in the isolated strain is through consequence oxidation of alcohol group (-OH) to aldehyde (-CHO) and acid (-COOH), and thereafter the cleavage of β-alanine betaine C-N bonds yielded trimethylamine and alkyl chain.Keywords: Homocholine, 3-N-trimethylamino-1-propanol, Quaternary ammonium compounds, 16S rDNA gene sequence.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061390
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537References:
[1] Anthoni, U., Christophersen, C., Hougaard, L., and P.H. Nielsen 1991. Quaternary ammonium compounds in the biosphere-an example of a versatile adaptive strategy. Comp. Biochem. Physiol. 99B: 1-18.
[2] Buck, J. D., 1982. Non-staining (KOH) method for determination of gram reaction of marine bacteria. Appl. Environ. Microbiol., 44: 992-993. PMID: 6184019; http://aem.asm.org/cgi/content/abstract/44/4/992
[3] Carroll, P.T., and J. M., Aspry 1980. Subcellular origin of cholinergic transmitter release from mouse brain. Science, 210: 641-642. DOI: 10.1126/science; PMID: 7433989
[4] Channon, H. J., Platt, A. P., and J.A.B. Smith, 1937. The dietary prevention of fatty livers. Two analogues of choline. Biochem. J., 31: 1736-1742. PMID: 16746513; http://www.biochemj.org/bj/031/bj0311736.htm
[5] Collier, B., Lovat, S., Ilson, D., Barker, L. A., and T. W. Mittag, 1977. The uptake, metabolisms and release of homocholine: studies with rat brain synaptosomes and cat superior cervical ganglion. J. Neurochem., 28: 331-339. DOI: 10.1111/j.1471- 4159.1977.tb07752.x; PMID: 839216
[6] Goodfellow M., J., Chun, E., Stackebrandt and R.M., Kroppenstedt 2002. Transfer of Tsukamurella wratislaviensis Goodfellow et al 1995 to the genus Rhodococcus as Rhodococcus wratislaviensis comb. nov. Int J Syst Evol Microbiol 52, 749-755. DOI: 10.1099/ijs.0.01969-0; PMID: 12054234
[7] Hampton D and L.J. Zatman 1983. The metabolism of tetramethylammonium chloride by bacterium 5H2. Biochem Soc Trans 1: 667-668.
[8] Hassan, M., Morimoto, S., Murakami, H., Ichiyanagi, T., and N. Mori, 2007. Purification and characterization of 4-N-Trimethylamino-1- butanol dehydrogenase of Pseudomonas sp. 13CM. Biosci. Biotechnol. Biochem., 71: 1439-1446. DOI:10.1271/bbb.60510; PMID: 17587673.
[9] Larkin M.J., Kulakov, L.A., and C.C.R. Allen, 2005. Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16: 282-290. DOI:10.1016/j.copbio.2005.04.007; PMID: 15961029
[10] Martinkova, L., Uhnakova, B., Patek, M., Nesvera, J., and V. Kren, 2009. Biodegradation potential of the genus Rhodococcus. Envirn Int 35. 162-177. DOI:10.1016/j.envint.2008.07.018; PMID: 18789530
[11] Miura-Fraboni, J., and S. Englard, 1983. Quantitative aspects of ╬│- butyrobetaine and D- and L-carnitine utilization by growing cell cultures of Acinotobacter calcoaceticus and Pseudomonas putida. FEMS Lett., 18: 113-116. DOI: 10.1111/j.1574- 6968.1983.tb00460.x.
[12] Mohamed Ahmed, I. A., Arima, J., Ichiyanagi, T., Sakuno, E., and N. Mori, 2009. Isolation and characterization of 3-N-trimethylamino-1- propanol degrading Arthrobacter sp. strain E5. Res. J. Microbiol. 4 (2): 49-58. DOI: 10.3923/jm.2009.49.58
[13] Mori, N., Shirakawa, K., Uzura, K., Kitamoto, Y., and Y. Ichikawa, 1988. Formation of ethylene glycol and trimethylamine from choline by Candida tropicalis. FEMS Lett., 51: 41-44. DOI: 10.1111/j.1574- 6968.1988.tb02965.x
[14] Nishimura, N., Zhang, J., Abo, M., Okubo, A., and S. Yamazaki, 2001. Application of capillary electrophoresis to the simultaneous determination of betaines in plants. Anal. Sci. J., 17: 103-106. DOI: 10.2116/analsci.17.103; PMID: 11993643
[15] Rhodes, D., Rich, P.J., Myers, A.C., Reuter, C.C., and G.C. Jamieson 1987. Determination of betaines by fast atom bombardment mass spectrometry. Plant Physiol., 84: 781-788. PMID: 16665522
[16] Saitou, N., and M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425. PMID: 3447015; http://mbe.oxfordjournals.org/cgi/content/short/4/4/406
[17] Seim, H., Loster, H., Claus, R., Kleber, H-P. and E. Strack, 1982. Formation of ╬│-butyrobetaine and trimethylamine from quaternary ammonium compounds structure-related to L-carnitine and choline by Proteus vulgaris. FEMS Lett., 13: 201-205. DOI: 10.1111/j.1574- 6968.1982.tb08256.x
[18] Tiedje, J.M., Mason, B.B., Warren, C.B., and E. Malec, 1973. Metabolisms of nitrilotriacetate by cells of Pseudomonas species. Appl. Microbiol., 25: 811-825, PMID: 4715561; http://aem.asm.org/cgi/content/abstract/25/5/811
[19] Van Ginkel C.G., Van Dijk, J.B., and A.G.M., Kroon, 1992. Metabolism of hexadecyltrimethylammonium chloride in Pseudomonas strain B1. Appl. Environ. Microbiol. 58: 3083-3087. http://aem.asm.org/cgi/reprint/58/9/3083; PMID: 1444422
[20] Van Ginkel C.G., 1996. Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation, 7: 151-164. DOI: 10.1007/BF00114627; PMID: 8882807
[21] Wayne LG, Brenner DJ, Colwell RR & 9 other authors (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464.
[22] Yoon J-H, Cho Y-G, Kang S-S, Kim SB, Lee ST & Park Y-H (2000) Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. Int. J. Syst. Evol. Microbiol., 50: 1193-1201. PMID: 10843063
[23] Zhang, J., Okubo, A., and S. Yamazaki, 1997. Determination of betaine aldehyde in plants by low-pH capillary electrophoresis. Bunseki Kagaku (in japaneese) 46: 509-511. DOI: ci.nii.ac.jp/naid/110002907156
[24] Zhang, J., Okubo, A., and S. Yamazaki, 2001. Measurement of free choline in plant leaves by capillary electrophoresis. Biosci. Biotechnol. Biochem., 65: 2573-2576. DOI: 10.1271/bbb.65.2573; PMID: 11791738