%0 Journal Article
	%A Mohd.F.Shabir and  P. Tamilporai and  B. Rajendra Prasath
	%D 2010
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 37, 2010
	%T Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine
	%U https://publications.waset.org/pdf/13276
	%V 37
	%X The fundamental aim of extended expansion concept is
to achieve higher work done which in turn leads to higher thermal
efficiency. This concept is compatible with the application of
turbocharger and LHR engine. The Low Heat Rejection engine was
developed by coating the piston crown, cylinder head inside with
valves and cylinder liner with partially stabilized zirconia coating of
0.5 mm thickness. Extended expansion in diesel engines is termed as
Miller cycle in which the expansion ratio is increased by reducing the
compression ratio by modifying the inlet cam for late inlet valve
closing. The specific fuel consumption reduces to an appreciable level
and the thermal efficiency of the extended expansion turbocharged
LHR engine is improved.
In this work, a thermodynamic model was formulated and
developed to simulate the LHR based extended expansion
turbocharged direct injection diesel engine. It includes a gas flow
model, a heat transfer model, and a two zone combustion model. Gas
exchange model is modified by incorporating the Miller cycle, by
delaying inlet valve closing timing which had resulted in considerable
improvement in thermal efficiency of turbocharged LHR engines. The
heat transfer model, calculates the convective and radiative heat
transfer between the gas and wall by taking into account of the
combustion chamber surface temperature swings. Using the two-zone
combustion model, the combustion parameters and the chemical
equilibrium compositions were determined. The chemical equilibrium
compositions were used to calculate the Nitric oxide formation rate by
assuming a modified Zeldovich mechanism. The accuracy of this
model is scrutinized against actual test results from the engine. The
factors which affect thermal efficiency and exhaust emissions were
deduced and their influences were discussed. In the final analysis it is
seen that there is an excellent agreement in all of these evaluations.
	%P 6 - 17