Search results for: wind driven ventilation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1023

Search results for: wind driven ventilation

663 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.

Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923
662 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections

Authors: Jackeline Kafie-Martinez, Peter B. Keating

Abstract:

A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.

Keywords: Jackeline Kafie-Martinez, Peter B. Keating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
661 Fuel Economy and Stability Enhancement of the Hybrid Vehicles by Using Electrical Machines on Non-Driven Wheels

Authors: P. Naderi, S.M.T. Bathaee, R. Hoseinnezhad, R. Chini

Abstract:

Using electrical machine in conventional vehicles, also called hybrid vehicles, has become a promising control scheme that enables some manners for fuel economy and driver assist for better stability. In this paper, vehicle stability control, fuel economy and Driving/Regeneration braking for a 4WD hybrid vehicle is investigated by using an electrical machine on each non-driven wheels. In front wheels driven vehicles, fuel economy and regenerative braking can be obtained by summing torques applied on rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety and path correction in steering. In this paper, a model with fourteen degrees of freedom is considered for vehicle body, tires and, suspension systems. Thereafter, powertrain subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controller is designed for each driving, braking, and stability conditions. Another fuzzy controller recognizes the vehicle requirements between the driving/regeneration and stability modes. Intelligent vehicle control to multi objective operation and forward simulation are the paper advantages. For reaching to these aims, power management control and yaw moment control will be done by three fuzzy controllers. Also, the above mentioned goals are weighted by another fuzzy sub-controller base on vehicle dynamic. Finally, Simulations performed in MATLAB/SIMULINK environment show that the proposed structure can enhance the vehicle performance in different modes effectively.

Keywords: Hybrid, pitch, roll, regeneration, yaw.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
660 Model-Based Software Regression Test Suite Reduction

Authors: Shiwei Deng, Yang Bao

Abstract:

In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.

Keywords: Dependence analysis, EFSM model, greedy algorithm, regression test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
659 Pseudo-polynomial Motion Commands for Vibration Suppression of Belt-driven Rotary Platforms

Authors: Giovanni Incerti

Abstract:

The motion planning technique described in this paper has been developed to eliminate or reduce the residual vibrations of belt-driven rotary platforms, while maintaining unchanged the motion time and the total angular displacement of the platform. The proposed approach is based on a suitable choice of the motion command given to the servomotor that drives the mechanical device; this command is defined by some numerical coefficients which determine the shape of the displacement, velocity and acceleration profiles. Using a numerical optimization technique, these coefficients can be changed without altering the continuity conditions imposed on the displacement and its time derivatives at the initial and final time instants. The proposed technique can be easily and quickly implemented on an actual device, since it requires only a simple modification of the motion command profile mapped in the memory of the electronic motion controller.

Keywords: Command shaping, residual vibrations, belt transmission, servomechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
658 Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine

Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini

Abstract:

This paper presents a mean for reducing the torque variation during the revolution of a vertical-axis wind turbine (VAWT) by increasing the blade number. For this purpose, twodimensional CDF analysis have been performed on a straight-bladed Darreius-type rotor. After describing the computational model, a complete campaign of simulations based on full RANS unsteady calculations is proposed for a three, four and five-bladed rotor architecture characterized by a NACA 0025 airfoil. For each proposed rotor configuration, flow field characteristics are investigated at several values of tip speed ratio, allowing a quantification of the influence of blade number on flow geometric features and dynamic quantities, such as rotor torque and power. Finally, torque and power curves are compared for the analyzed architectures, achieving a quantification of the effect of blade number on overall rotor performance.

Keywords: CFD, VAWT, NACA 0021, blade number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5292
657 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.

Keywords: Artificial Neural Network, ANN, Coronal Hole Area Feed-Forward neural network models, solar High-Speed Streams, HSSs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58
656 Conversion of Mechanical Water Pump to Electric Water Pump for a CI Engine

Authors: K. Arunachalam, P. Mannar Jawahar

Abstract:

Presently, engine cooling pump is driven by toothed belt. Therefore, the pump speed is dependent on engine speed which varies their output. At normal engine operating conditions (Higher RPM and low load, Higher RPM and high load), mechanical water pumps in existing engines are inevitably oversized and so the use of an electric water pump together with state-of-the-art thermal management of the combustion engine has measurable advantages. Demand-driven cooling, particularly in the cold-start phase, saves fuel (approx 3 percent) and leads to a corresponding reduction in emissions. The lack of dependence on a mechanical drive also results in considerable flexibility in component packaging within the engine compartment. This paper describes the testing and comparison of existing mechanical water pump with that of the electric water pump. When the existing mechanical water pump is replaced with the new electric water pump the percentage gain in system efficiency is also discussed.

Keywords: Cooling system, Electric water pump, Mechanical water pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5580
655 Drag Analysis of an Aircraft Wing Model withand without Bird Feather like Winglet

Authors: Altab Hossain, Ataur Rahman, A.K.M. P. Iqbal, M. Ariffin, M. Mazian

Abstract:

This work describes the aerodynamic characteristic for aircraft wing model with and without bird feather like winglet. The aerofoil used to construct the whole structure is NACA 653-218 Rectangular wing and this aerofoil has been used to compare the result with previous research using winglet. The model of the rectangular wing with bird feather like winglet has been fabricated using polystyrene before design using CATIA P3 V5R13 software and finally fabricated in wood. The experimental analysis for the aerodynamic characteristic for rectangular wing without winglet, wing with horizontal winglet and wing with 60 degree inclination winglet for Reynolds number 1.66×105, 2.08×105 and 2.50×105 have been carried out in open loop low speed wind tunnel at the Aerodynamics laboratory in Universiti Putra Malaysia. The experimental result shows 25-30 % reduction in drag coefficient and 10-20 % increase in lift coefficient by using bird feather like winglet for angle of attack of 8 degree.

Keywords: Aerofoil, Wind tunnel, Winglet, Drag Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6258
654 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
653 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change

Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: Data-driven analysis, demand response, direct load control, HVAC system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
652 Dynamic Analysis of Transmission Line Towers

Authors: Srikanth L., Neelima Satyam D.

Abstract:

The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987(Wind Load), IS: 802:1995(Structural steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.

Keywords: Response Spectra, Dynamic Analysis, Central Difference Method, Transmission Tower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4030
651 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations

Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska

Abstract:

Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.

Keywords: Scaffoldings, health and safety at work, temperature, wind speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
650 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study

Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim

Abstract:

Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.

Keywords: Optimum energy systems, renewable energy sources, smart grid, micro-grid system, on- grid system, off-grid system, modeling and simulation, economical evaluation, net present value, cost of energy, environmental impacts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
649 Small Signal Stability Enhancement for Hybrid Power Systems by SVC

Authors: Ali Dehghani, Mojtaba Hakimzadeh, Amir Habibi, Navid Mehdizadeh Afroozi

Abstract:

In this paper an isolated wind-diesel hybrid power system has been considered for reactive power control study having an induction generator for wind power conversion and synchronous alternator with automatic voltage regulator (AVR) for diesel unit is presented. The dynamic voltage stability evaluation is dependent on small signal analysis considering a Static VAR Compensator (SVC) and IEEE type -I excitation system. It's shown that the variable reactive power source like SVC is crucial to meet the varying demand of reactive power by induction generator and load and to acquire an excellent voltage regulation of the system with minimum fluctuations. Integral square error (ISE) criterion can be used to evaluate the optimum setting of gain parameters. Finally the dynamic responses of the power systems considered with optimum gain setting will also be presented.

Keywords: SVC, Small Signal Stability, Reactive Power, Control, Hybrid System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
648 Aerodynamic Bicycle Torque Augmentation with a Wells Turbine in Wheels

Authors: Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Cyclists often run through a crosswind and sometimes we experience the adverse pressure. We came to an idea that Wells turbine can be used as power augmentation device in the crosswind something like sails of a yacht. Wells turbine always rotates in the same direction irrespective of the incoming flow direction, and we use it in the small-scale power generation in the ocean where waves create an oscillating flow. We incorporate the turbine to the wheel of a bike. A commercial device integrates strain gauges in the crank of a bike and transmitted force and torque applied to the pedal of the bike as an e-mail to the driver’s mobile phone. We can analyze the unsteady data in a spreadsheet sent from the crank sensor. We run the bike with the crank sensor on the rollers at the exit of a low-speed wind tunnel and analyze the effect of the crosswind to the wheel with a Wells turbine. We also test the aerodynamic characteristics of the turbine separately. Although power gain depends on the flow direction, several Watts increase might be possible by the Wells turbine incorporated to a bike wheel.

Keywords: Aerodynamics, wells turbine, bicycle, wind engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
647 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production

Authors: Olga Orynycz, Andrzej Wasiak

Abstract:

Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.

Keywords: Biofuel, energetic efficiency, EROEI, mathematical modelling, production system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
646 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045

Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt

Abstract:

To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.

Keywords: 100% renewable electricity, California, capacity expansion, binary quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
645 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men

Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi

Abstract:

Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.

Keywords: Bronchospasm, aerobic active maximum, pulmonary function, spirometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
644 Managing the Cloud Procurement Process – Findings from a Case Study

Authors: Andreas Jede, Frank Teuteberg

Abstract:

Cloud computing (CC) has already gained overall appreciation in research and practice. Whereas the willingness to integrate cloud services in various IT environments is still unbroken, the previous CC procurement processes run mostly in an unorganized and non-standardized way. In practice, a sufficiently specific, yet applicable business process for the important acquisition phase is often lacking. And research does not appropriately remedy this deficiency yet. Therefore, this paper introduces a field-tested approach for CC procurement. Based on an extensive literature review and augmented by expert interviews, we designed a model that is validated and further refined through an in-depth real-life case study. For the detailed process description, we apply the event-driven process chain notation (EPC). The gained valuable insights into the case study may help CC research to shift to a more socio-technical area. For practice, next to giving useful organizational instructions we will provide extended checklists and lessons learned.

Keywords: Cloud Procurement Process, IT-Organization, Event-driven Process Chain, In-depth Case Study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
643 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete

Authors: M. Eckert, M. Oliveira

Abstract:

The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.

Keywords: Recycled Aggregate, Plastic Shrinkage Cracking; Wind Tunnel, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
642 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382
641 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: Doubly fed induction generetor, direct power control, space vector modulation, type-2 fuzzy logic control, neuro-fuzzy control, maximum power point tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
640 Automating the Testing of Object Behaviour: A Statechart-Driven Approach

Authors: Dong He Nam, Eric C. Mousset, David C. Levy

Abstract:

The evolution of current modeling specifications gives rise to the problem of generating automated test cases from a variety of application tools. Past endeavours on behavioural testing of UML statecharts have not systematically leveraged the potential of existing graph theory for testing of objects. Therefore there exists a need for a simple, tool-independent, and effective method for automatic test generation. An architecture, codenamed ACUTE-J (Automated stateChart Unit Testing Engine for Java), for automating the unit test generation process is presented. A sequential approach for converting UML statechart diagrams to JUnit test classes is described, with the application of existing graph theory. Research byproducts such as a universal XML Schema and API for statechart-driven testing are also proposed. The result from a Java implementation of ACUTE-J is discussed in brief. The Chinese Postman algorithm is utilised as an illustration for a run-through of the ACUTE-J architecture.

Keywords: Automated testing, model based testing, statechart testing, UML, unit testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
639 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: Direct search, DFIG, equivalent circuit parameters, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
638 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration

Authors: Soltani Amir, Hu Jiaxin

Abstract:

Determination of optimal parameters of a passive  control system device is the primary objective of this study.  Expanding upon the use of control devices in wind and earthquake  hazard reduction has led to development of various control systems.  The advantage of non-linearity characteristics in a passive control  device and the optimal control method using LQR algorithm are  explained in this study. Finally, this paper introduces a simple  approach to determine optimum parameters of a nonlinear viscous  damper for vibration control of structures. A MATLAB program is  used to produce the dynamic motion of the structure considering the  stiffness matrix of the SDOF frame and the non-linear damping  effect. This study concluded that the proposed system (variable  damping system) has better performance in system response control  than a linear damping system. Also, according to the energy  dissipation graph, the total energy loss is greater in non-linear  damping system than other systems.

 

Keywords: Passive Control System, Damping Devices, Viscous Dampers, Control Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3559
637 Novel CFRP Adhesive Joints and Structures for Offshore Application

Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa

Abstract:

Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: one is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.

Keywords: Adhesive joints, CFRP, VARTM, resin transfer molding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
636 Design, Simulation and Experimental Realization of Nonlinear Controller for GSC of DFIG System

Authors: R.K. Behera, S.Behera

Abstract:

In a wind power generator using doubly fed induction generator (DFIG), the three-phase pulse width modulation (PWM) voltage source converter (VSC) is used as grid side converter (GSC) and rotor side converter (RSC). The standard linear control laws proposed for GSC provides not only instablity against comparatively large-signal disturbances, but also the problem of stability due to uncertainty of load and variations in parameters. In this paper, a nonlinear controller is designed for grid side converter (GSC) of a DFIG for wind power application. The nonlinear controller is designed based on the input-output feedback linearization control method. The resulting closed-loop system ensures a sufficient stability region, make robust to variations in circuit parameters and also exhibits good transient response. Computer simulations and experimental results are presented to confirm the effectiveness of the proposed control strategy.

Keywords: Doubly fed Induction Generator, grid side converter, machine side converter, dc link, feedback linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
635 Effect of Wind and Humidity on Microwave Links in North West Libya

Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri

Abstract:

The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.

Keywords: Attenuation, scattering, transmission loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
634 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

Authors: A.H.M.A.Rahim

Abstract:

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326