Search results for: R. Chini
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: R. Chini

3 Heavy Metal Concentrations in Fanworth (Cabombafurcata) from Lake Chini, Malaysia

Authors: Ahmad, A.K., Shuhaimi-Othman, M. Hoon, L.P.

Abstract:

Study was conducted to determine the concentration of copper, cadmium, lead and zinc in Cabomba furcata that found abundance in Lake Chini. This aquatic plant was collected randomly within the lake for heavy metal determination. Water quality measurement was undertaken in situ for temperature, pH, conductivity and dissolved oksigen using portable multi sensor probe YSI model 556. The C. furcata was digested using wet digestion method and heavy metal concentrations were analysed using Atomic Absorption Spectrometer (AAS) Perkin Elmer 4100B (flame method). Result of water quality classify Lake Chini between class II to class III using Malaysian Water Quality Standard. According to this standard, Lake Chini has moderate quality, which normal for natural lake. Heavy metal concentrations in C.furcata were low and found to be lower than the critical toxic value in aquatic plants. Oneway ANOVA test indicated the heavy metal concentrations in C.furcata were significantly differ between sampling location. Water quality and heavy metal concentrations indicates that Lake Chini was not receives anthropogenic load from nearby activities.

Keywords: Cabomba furcata, Heavy metal, Lake Chini, Waterquality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
2 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1 Fuel Economy and Stability Enhancement of the Hybrid Vehicles by Using Electrical Machines on Non-Driven Wheels

Authors: P. Naderi, S.M.T. Bathaee, R. Hoseinnezhad, R. Chini

Abstract:

Using electrical machine in conventional vehicles, also called hybrid vehicles, has become a promising control scheme that enables some manners for fuel economy and driver assist for better stability. In this paper, vehicle stability control, fuel economy and Driving/Regeneration braking for a 4WD hybrid vehicle is investigated by using an electrical machine on each non-driven wheels. In front wheels driven vehicles, fuel economy and regenerative braking can be obtained by summing torques applied on rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety and path correction in steering. In this paper, a model with fourteen degrees of freedom is considered for vehicle body, tires and, suspension systems. Thereafter, powertrain subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controller is designed for each driving, braking, and stability conditions. Another fuzzy controller recognizes the vehicle requirements between the driving/regeneration and stability modes. Intelligent vehicle control to multi objective operation and forward simulation are the paper advantages. For reaching to these aims, power management control and yaw moment control will be done by three fuzzy controllers. Also, the above mentioned goals are weighted by another fuzzy sub-controller base on vehicle dynamic. Finally, Simulations performed in MATLAB/SIMULINK environment show that the proposed structure can enhance the vehicle performance in different modes effectively.

Keywords: Hybrid, pitch, roll, regeneration, yaw.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832