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Abstract—In recent years, the development of communication 

infrastructure and smart meters have facilitated the utilization of 
demand-side resources which can enhance stability and economic 
efficiency of power systems. Direct load control programs can play an 
important role in the utilization of demand-side resources in the 
residential sector. However, investments required for installing control 
equipment can be a limiting factor in the development of such demand 
response programs. Thus, selection of consumers with higher 
potentials is crucial to the success of a direct load control program. 
Heating, ventilation, and air conditioning (HVAC) systems, which due 
to the heat capacity of buildings feature relatively high flexibility, 
make up a major part of household consumption. Considering that the 
consumption of HVAC systems depends highly on the ambient 
temperature and bearing in mind the high investments required for 
control systems enabling direct load control demand response 
programs, in this paper, a solution is presented to uncover consumers 
with high air conditioner demand among a large number of consumers 
and to measure the demand response potential of such consumers. This 
can pave the way for estimating the investments needed for the 
implementation of direct load control programs for residential HVAC 
systems and for estimating the demand response potentials in a 
distribution system. In doing so, we first cluster consumers into several 
groups based on the correlation coefficients between hourly 
consumption data and hourly temperature data using K-means 
algorithm. Then, by applying a recent algorithm to the hourly 
consumption and temperature data, consumers with high air 
conditioner consumption are identified. Finally, demand response 
potential of such consumers is estimated based on the equivalent 
desired temperature setpoint changes. 

 
Keywords—Data-driven analysis, demand response, direct load 

control, HVAC system. 

I. INTRODUCTION 

HE use of renewable energy has been on the rise due to the 
increase in demand for electricity consumption. At the 

other hand increasing electrical energy consumption [1], the 
proliferation of renewable energy sources aiming at elevating 
energy security and reducing the production of greenhouse 
gases [2], and maintaining the balance between consumption 
and production of electric power in the modern power grids [3] 
are among the main challenges facing power system planners 
and operators. Addressing these issues calls for the provision of 
higher levels of flexibility for which demand response plays a 
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key role [4]. Demand response refers to the adjustments that 
electricity consumers make to their normal usage patterns based 
on the fluctuations in the electricity price over time, or based on 
the incentive payments that encourage them to reduce their 
electricity consumption when the wholesale market prices are 
high or the system is at risk [5]. 

Direct load control belongs to a category of demand response 
known as incentive-based programs. In a direct load control 
program, customers’ equipment is directly controlled by the 
utility. When the demand response program is invoked, each 
equipment is either turned off or its time of operation is slightly 
shifted to fall in an adjacent period of lower demand. Direct 
load control is typically used for small commercial and 
residential customers. In exchange for taking the control of 
customers’ equipment, utilities grant incentive payments or 
credits to customers. Also, utilities often provide customers 
with several options such as the ability to cancel the program 
and to limit its annual frequency and duration of execution. In 
general, direct load control programs are relatively simple, 
reliable, and popular among residential customers [5]. 

Direct load control programs can exploit the flexibility of 
household equipment, thereby increasing the overall flexibility 
of a power system [6]. HVAC systems are high consumption 
residential equipment featuring high flexibility potentials 
thanks to the heat capacity of buildings, and thus, being 
regarded as popular equipment for direct load control programs 
[7]. Numerous research works have focused on proposing 
mathematical models for flexile equipment such as HVAC 
systems to investigate their demand response potentials. In this 
respect, a model for HVAC systems is proposed in [8] to 
investigate the impact of different temperature dead band for 
HVAC system in direct load control program. The authors in 
[9] proposed a model for various flexible loads such as 
residential HVAC systems under incentive-based demand 
response programs considering customers’ comfort to evaluate 
the demand response potentials. One of the significant 
challenges in adopting these mathematical-modeling-based 
methods is that the aggregator or system operator must have 
sufficient information about several parameters of the 
customers’ equipment. The computational cost of solving the 
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models for a large set of consumers can be regarded as another 
limiting factor. 

In view of the challenges mentioned and the difficulties in 
extracting some of the parameters or achieving accurate 
outcomes when simplified models are used, such techniques 
may not be applicable for large number of customers.  

Accordingly, many studies leveraged data-driven approaches 
to detect customers with high temperature-dependent power 
consumption and extracting HVAC consumption based on 
weather conditions in order to evaluate demand response 
potential of the air conditioning systems. In this respect, the 
authors in [10] proposed an unsupervised load analysis method 
for large-scale customers by assessing seasonal demand 
variations to divide the total energy consumption into the 
amount of HVAC consumption and baseline load. Then, based 
on the thermal dynamic model of the HVAC system, an 
approach to estimate parameters of the HVAC system and 
demand response potential is presented. The authors in [11] 
proposed a method where the total consumption of the 
household and the outdoor temperature are used as input data to 
disentangle HVAC consumption from baseline load with the 
goal of measuring expected reduction in HVAC consumption 
in response to temperature setpoint changes. Authors in [12] 
proposed a method for using consumption pattern of every 
customer to identify those with high potentials for adjusting the 
set point of HVAC when participated in demand response 
programs. This method also divides the total consumption into 
baseline load and HVAC consumption. In [13], regression-
based techniques are utilized to detect consumers with the 
highest temperature dependent consumption pattern. 

While the previous studies have provided valuable insights 
into the techniques for separating baseline load from the HVAC 
system consumption and identifying high consumption 
customers, such research works either use data screening 
methods to partition customers or do not provide an appropriate 
algorithm for separating the baseline load from the HVAC 
consumption. In addition, the methods utilized for identifying 
high consumption customers are typically computationally 
expensive, thereby not applicable for a large number of 
customers. Some studies only focused on the separation of 
baseline load from the HVAC system consumption, and did not 
address the estimation of the demand response potential of the 
customers. Motivated by these points, this paper proposes a 
two-stage method for detecting consumers with high HVAC 
consumption among large number of customers. The outcomes 
will then be employed to estimate demand response potential of 
the consumers. 

II. DATA ANALYSIS 

In this paper, data from the Low Carbon London Project have 
been used [14]. This dataset includes electricity consumption 
for a set of 5,567 households in London that participated in the 
project between November 2011 and February 2014. The 
customers’ consumption data have been collected at half-hourly 
intervals using smart meters. There are two groups of customers 
in this dataset: 1) a subset of approximately 1100 customers 
who were exposed to time-varying energy prices in 2013, and 

2) the rest of the customers being exposed to a fixed rate tariff 
(14.228 pence/kWh). For the first group, prices had three levels, 
namely high (67.20 pence/kWh), medium (11.76 pence/kWh), 
and low (3.99 pence/kWh). 

Based upon the initial preprocessing of the dataset, the 
consumption data from January 1, 2013 to the end of December 
2013 were selected as the information was found to be more 
consistent. Even the selected period includes missing values 
during some time intervals which are eliminated in the analyses. 
Considering that the data collected by the smart meters are 
available with higher resolutions compared to the accessible 
weather data, two methods can be considered for adapting the 
time scales: 
1) Sampling the consumption data at the frequency of weather 

data points, taking into account the higher resolution of the 
consumption data, results in losing some information. 
However, this approach can maintain the accuracy as no 
synthetic data are generated. In addition, as the size of the 
dataset is reduced, the computational complexities 
decrease. 

2) Curve fitting is used in weather data to fill in missing 
measurements in the sampling frequency of consumption 
data. This method might reduce the accuracy of the model 
considering the injection of synthetic data, yet avoids losing 
high-resolution consumption data. 

In this research, the first method is used to harmonize the 
time scale of different datasets in order to maintain the model 
accuracy. 

HVAC systems can be operated in cooling and heating 
modes. Depending on the regional weather condition, the use of 
cooling and heating systems and the utilization ratio of each 
mode are different. Therefore, in order to determine whether the 
customers of a region use cooling, heating, or both, firstly, the 
aggregated profile of the hourly consumption of the customers 
(half-hourly sampled consumption data) is obtained. Then, the 
aggregated consumption of customers is plotted as a function of 
ambient temperature and a piece-wise linear function is fitted to 
the data as can be seen in Fig. 1. According to this figure, as the 
temperature decreases, the consumption increases. Therefore, 
based on the ambient temperature range and the relation 
between the power consumption and temperature, it can be 
implied that in the case under study, heating is the dominant 
mode of HVAC operation. 

 

 

Fig. 1 Aggregated consumption data of customers versus outdoor 
temperature, and the piece-wise linear curve fitted on the data 
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III. METHODOLOGY 

As concluded from the data pre-processing, the consumption 
and weather data show the notable use of heating systems. 
However, it can be inferred from Fig. 1 that many customers do 
not use electric heating systems, or the use of such systems by 
these customers is negligible. One of the major challenges for a 
load aggregator is to find customers with high HVAC 
consumption in order to select the customers with high 
flexibility, thus, of potential interest for direct load control 
demand response programs. In this regard, at the first stage, the 
correlation (r) between hourly consumption and temperature 
during a year is calculated separately for each customer 
according to (1), which represents the correlation coefficient r 
between two variables 𝑥 and 𝑦 [15]. In this equation, 𝑥̅ and 𝑦ത 
respectively indicate the mean values of 𝑥 and 𝑦. 

 

𝑟 ൌ  
∑ ሺ௫೔ି௫̅ሻሺ௬೔ି௬തሻ೙

೔సభ

ට∑ ሺ௫೔ି௫̅ሻమ೙
೔సభ ∑ ሺ௬೔ି௬തሻమ೙

೔సభ

   (1) 

 
Then, K-means clustering method [16] is applied to the 

obtained correlation coefficients to divide customers into 
different groups. The objective function of this clustering 
algorithm is to minimize the summation of the square errors 
between the members of each cluster and the associated cluster 
center, which is expressed in (2). In this equation, K is the 
number of clusters, 𝐶௞ is the set of customers in cluster k, 𝐿௠,ௗ 
represents the set of features for customer m, and 𝑐௞.ௗ indicates 
the center of cluster k, and 𝑑 represents number of features. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝐹 ൌ  ∑ ∑ ฮ𝐿௠,ௗ െ 𝑐௞,ௗฮ
ଶ

௠∈஼ೖ
௄
௞ୀଵ   (2) 

 
In order to choose the best value for 𝐾, two indices, namely 

inertia and average Silhouette score, are used in this paper. The 
inertia expresses the summation of the square values of the 
distances between data points and their associated cluster 
centers, thus, the lower the value of the inertia parameter the 
more coherent the clusters. Equation (3) expresses the 
Silhouette scores for each point and their average value. 

 

𝑆௜ ൌ  

⎩
⎨

⎧1 െ
௔೔

௕೔
    𝑎௜ ൏ 𝑏௜

0              𝑎௜ ൌ 𝑏௜
௕೔

௔೔
െ 1     𝑎௜ ൐ 𝑏௜

→ 𝑆௔௩௚ ൌ  ଵ

ே
∑ 𝑆௜

ே
௜ୀଵ   (3) 

 
where, 𝑁  represents number of data points, 𝑎௜  represents the 
average distance between data point i and all the other data 
points being in the same cluster, and 𝑏௜ indicates the minimum 
value of the average distance between data point i and all the 
data points falling in a cluster to which data point i does not 
belong. The average value of the Silhouette index is between -
1 and 1, and the closer this number is to 1, the better the data 
clustering is. 

As consumers with high HVAC demand are identified in the 
first stage, an algorithm is presented in the second stage to 
separate baseline load and HVAC consumption for each of the 
customers identified in the first stage. This is to evaluate HVAC 

demand response potential based on set point changes. The 
algorithm comprises of the following steps: 
1. The break point for all customers is considered to be 15 °C 

because based on the data analyzed before, the use of 
heating system at temperatures above 15 °C is unlikely. 
Also, if it is in use, the system consumption and therefore 
the system flexibility are relatively negligible. Thus, the 
customer's hourly consumption for temperatures above 15 
°C are eliminated. 

2. The hourly consumption data for ambient temperatures 
below 15 °C are divided into two categories based on the 70 
percentile of consumption, in such a way that consumption 
data greater than the 70 percentile are assumed to be related 
to HVAC consumption and consumption data less than the 
70 percentile are considered as the baseline load. 

3. A line is fitted for HVAC consumption and another one 
with zero slope is fitted for baseline load according to (4). 
In this equation, 𝑃௛ represents the customer's consumption 
in timestep ℎ, 𝑎 represents the slope of the line fitted for the 
HVAC consumption, 𝑏 represents the intercept of the line 
fitted for HVAC, and 𝑐 represents the baseline load.  
 

൜
𝑃௛ ൌ 𝑎𝑇௛ ൅ 𝑏          𝐻𝑉𝐴𝐶
𝑃௛ ൌ 𝑐                 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ; ∀ℎ ∈ ሼ1, … ,24ሽ    (4) 

 
4. After fitting the above lines, the data are re-categorized 

based on the line in between the two lines in such a way that 
the hourly consumption data above this line are related to 
HVAC consumption and the hourly consumption data 
below this line are related to the baseline load. The function 
of this line is according to (5): 
 

𝑃௛ ൌ ௔

ଶ
𝑇௛ ൅ ௕ା௖

ଶ
; ∀ℎ ∈ ሼ1, … ,24ሽ   (5) 

 
5. Step 3 and step 4 are repeated until the results do not change 

significantly. 
As the algorithm is applied to all customers, those with 

negative slope 𝑎  are chosen as those with highest HVAC 
consumption. The more negative the value of 𝑎 , the more 
flexible the consumption of the HVAC system and the greater 
the customer’s demand dependence on ambient temperature. 

The reason for using a two-stage technique to identify the 
customers with high HVAC consumption is that the algorithm 
of the second stage is significantly slower than that of the first 
stage and it is substantially time-consuming for a large number 
of customers. 

In order to measure the demand response potential of a 
HVAC system, it is assumed that a shift in the setpoint of the 
HVAC system is equivalent to a similar change in the ambient 
air temperature with an identical consumer comfort. This 
simplified assumption ignores the effects of the heat capacity of 
buildings, and therefore the demand response potential obtained 
from this simplified method is lower than the actual case, 
because due to the heat capacity of a building, it takes a longer 
time for the air temperature inside the house to be equal to the 
outdoor air temperature. In this paper, a 4-degree decrease in 
the set point is considered for estimating the demand response 
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potential of a HVAC system. This set point change, as 
explained before, is equivalent to a 4-degree increase in the 
outdoor air temperature. This amount of set point change is 
considered as it does not significantly endanger the thermal 
comfort of the customers. The demand response potential of 
each customer is calculated separately according to (6), where 
𝑎௜ represents the slope of the line fitted for the HVAC system, 
and 𝑇  is the outdoor air temperature during the demand 
response program implementation hour. It is worth mentioning 
that the break point 𝑋0௜ is considered 15 °C in our proposed 
method. 

 

𝐷𝑅௜ ൌ 𝑚𝑖𝑛൫4𝑎௜. 𝑎௜ሺ𝑋0௜ െ 𝑇ሻ൯          𝑇 ൑ 𝑋0௜  (6) 

IV. STUDY RESULTS 

The proposed method is implemented for 5,526 residential 
customers participated in the Low Carbon London Project. In 
the first stage, correlation coefficient between a customer's 
hourly consumption and hourly outdoor temperature for one-
year data is calculated for all customers. The coefficient is then 
used as the customer's feature to cluster customers into different 
groups. Running K-means clustering algorithm with different K 
values results in the inertia indices presented in Fig. 2. 
According to this figure, the higher the number of groups or the 
value of K, the lower the inertia. To decide the best value of K, 
we need the Silhouette index as well. The average silhouette 
indices for different K values are provided in Table I. 
According to this table, the best number of groups is 2, 
nonetheless, because the inertia index is high for this K value. 
Considering both inertia and Silhouette indices the number of 
groups is selected to be 6 for which the average Silhouette index 
is the second highest and the inertia index is low. 

 

 

Fig. 2 Inertia index for different number of clusters 
 

TABLE I 
AVERAGE SILHOUETTE INDEX FOR DIFFERENT NUMBER OF GROUPS 

Different number of groups Average silhouette index

2 0.6226 

3 0.5204 

4 0.5166 

5 0.5173 

6 0.5259 

7 0.5155 

8 0.5220 

Accordingly, the K-means algorithm divides customers into 
six groups. Values of the Silhouette index for all members of 
the groups are illustrated in Fig. 3. In this figure, the average 
value of the Silhouette index is shown with a dashed red line 
and the distribution of silhouette indices for each group is 
depicted with distinct colors. The numbers of customers in each 
group are given in Table II. As the next step, all the customers 
in each group are aggregated, i.e., summation of hourly 
consumption of the customers is determined. Finally, for 
visualization, the algorithm proposed in Stage 2 is applied, 
which results in the graphs depicted in Fig. 4. According to this 
figure, Group 2 is the high-HVAC-consumption group, Group 
1, Group 3, and Group 4 are among the groups with medium 
HVAC consumption and Group 5 and Group 6 do not 
noticeably use the HVAC system. After the approximate 
selection of customers in the first stage, groups of interest based 
on the temperature dependence of the demand can be chosen for 
the next stage. We choose Group 2, which is the group with the 
highest demand-temperature dependence. In Stage 2, the 
algorithm proposed in this stage is applied to hourly 
consumption and hourly temperature data for each customer. 
Then, customers with negative slope 𝑎 are chosen as consumers 
with high HVAC consumption. For these customers, the 
estimated value for demand response potential of the HVAC 
systems based on a 4-degree decrease in the temperature 
setpoint are given in Table III. As can be seen in this table, 
average demand response potential of the members in this 
group is about 113 Watt. 

 

 

Fig. 3 Distribution of Silhouette index for all clusters 
 

TABLE II 
NUMBER OF MEMBERS IN EACH GROUP 

Groups Number of members 

1 937 

2 128 

3 386 

4 1738 

5 1980 

6 357 
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Fig. 4 Proposed algorithm in Stage 2 for aggregated customers in each group 
 

TABLE III 
STATISTICAL DATA FOR THE DEMAND RESPONSE POTENTIAL OF THE 

MEMBERS IN GROUP 6 

 Demand response potential (𝑊) 

Mean 113.07 

Std 103.816 

Min 0.052 

25 percentile 35.805 

50 percentile 84.63 

75 percentile 157.17 

Max 573.29 

V. CONCLUSIONS  

Considering high costs of controlling equipment in direct 
load control programs on one hand, and considerable flexibility 
of HVAC systems on the other hand, in this paper, a two-stage 
method was proposed to identify consumers with high HVAC 
demand among large number of customers. In the first stage, 
consumers are clustered based on the correlation coefficient 
between hourly consumption and hourly temperature data 
extracted for each consumer. Then, in the second stage, by 
choosing consumers with high-temperature-dependent demand 
as identified in the first stage, an algorithm is proposed to detect 
consumers with excessive HVAC consumptions. In this 
algorithm, baseline load and HVAC consumption are separated. 
Finally, demand response potential of the HVAC system is 
measured based on the setpoint change. The reason for using 
two stages to separate customers is that the algorithm of the 
second stage is much slower than that of the first stage and it is 
specifically time-consuming for a large number of customers. 
The numerical study showed the applicability of the proposed 
algorithm for identifying consumers with high HVAC demand 
and separating HVAC consumption from baseline load in order 
to estimate the demand response potential.  
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