
 

 

  

Abstract—Determination of optimal parameters of a passive 

control system device is the primary objective of this study. 

Expanding upon the use of control devices in wind and earthquake 

hazard reduction has led to development of various control systems. 

The advantage of non-linearity characteristics in a passive control 

device and the optimal control method using LQR algorithm are 

explained in this study. Finally, this paper introduces a simple 

approach to determine optimum parameters of a nonlinear viscous 

damper for vibration control of structures. A MATLAB program is 

used to produce the dynamic motion of the structure considering the 

stiffness matrix of the SDOF frame and the non-linear damping 

effect. This study concluded that the proposed system (variable 

damping system) has better performance in system response control 

than a linear damping system. Also, according to the energy 

dissipation graph, the total energy loss is greater in non-linear 

damping system than other systems. 

 

Keywords—Passive Control System, Damping Devices, Viscous 

Dampers, Control Algorithm. 

I. INTRODUCTION 

XPANDING upon the use of control devices in wind and 

seismic isolation has led to the development of various 

control systems. Control systems in various applications are 

widely used in mechanical and electrical engineering. Shut 

on/off control devices in electric devices and shock absorbers 

in vehicles can be mentioned as examples of control systems 

in those fields of study. Today, it is common in structural 

engineering to use control systems to decrease structures’ 

responses and control the interior and exterior excitations. 

These system devices may be classified as passive, active or 

semi-active. Recently, they have come to be considered 

successful system devices in increasing the resistance of 

structures by damping the excitation caused by an earthquake 

or wind, especially in tall buildings and suspension bridges.  

Passive dampers include metallic dampers, friction 

dampers, viscous fluid dampers, viscoelastic dampers, tuned 

liquid dampers and tuned mass which are used in civil 

engineering structures. In 1969, about 10,000 viscoelastic 

dampers were installed in each twin tower of the World Trade 

Center in New York. They were designed to assist the tubular 

steel frame in limiting wind-induced building vibrations to 

levels below human perception and serviceability satisfaction. 

The quantities, shape and location of the dampers were chosen 

based on the dynamics of the towers and the required damping 

to achieve the performance objectives. After Hurricane Gloria 

in 1978, the total damping of the buildings was calculated and 
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found to be in the range of 2.5% to 3% of critical damping [1]. 

According to past research, internal damping of a building is 

naturally 1 to 7 percent of the critical damping; the building’s 

full optimum performance can be obtained with a damping 

equal to 25 to 30 percent of the critical damping by installing 

optimum linear damping devices. However, tests on building 

models showed that an increase of damping up to 50 percent 

of critical damping will improve the system’s performance [4]. 

 To reach this amount of damping in a structure, active or 

semi-active dampers with variable damping under harmonic 

excitation have been studied. However, these dampers are not 

economical to use because of the high costs of installation and 

powering. The disadvantages of using an active control system 

in structures force engineers to investigate passive or semi 

active systems for vibration control of structures [6]. To 

prevent malfunction and loss of functionality due to power 

failure in active control systems (a common problem 

occurring from severe earthquakes in active or semi active 

systems), and to maintain consistency and stability of damping 

performance, a new passive damper with non-linearity 

parameters is being considered in this study.  

One of best system devices for the dissipation of transferred 

energy to structures in various external excitations is a viscous 

damper. Use of viscous fluid for shock and vibration 

mitigation is common in heavy industry and the military. For 

example, automotive shock absorbers were invented in the 

early 1900s. In the 1970s, the first full-scale implementation 

of viscous fluid dampers was done for bridges in Italy and 

New Zealand. In the 1980s, significant efforts were made 

toward the conversion of this industrial technology toward 

applications in civil engineering structures [1]. These efforts 

led to the development, analysis and modeling, and testing and 

full-scale implementation of viscous fluid dampers. The 

straightforward design is achieved with a classical dashpot, 

when dissipation occurs by converting kinetic energy to heat 

as a stroke moves and deforms a thick, highly viscous fluid. 

The relative movement of a damper stroke to the damper 

housing drives the viscous damper fluid back and forth 

through an orifice. Energy is dissipated by the friction 

between the fluid and the orifice. This kind of damper can 

provide motion and energy dissipation in all six degrees of 

freedom as vibration in any direction can shake the viscous 

fluid [1].  

II. DAMPING SYSTEM IN SEISMIC APPLICATION 

The current available viscous dampers in industry are 

highly priced. Many tall building designers avoid or limit 

using dampers in their design because of the cost. These 

Soltani Amir, Hu Jiaxin 

Optimum Parameter of a Viscous Damper for 

Seismic and Wind Vibration  

E

World Academy of Science, Engineering and Technology
International Journal of Geological and Environmental Engineering

 Vol:8, No:2, 2014 

192International Scholarly and Scientific Research & Innovation 8(2) 2014 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 G
eo

lo
gi

ca
l a

nd
 E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
2,

 2
01

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
99

75
39

.p
df



 

 

dampers provide a constant damping coefficient (linear 

relationship between velocity and damping force) and they are 

classified as either seismic dampers or wind dampers. 

Therefore the dampers used for seismic isolation are not 

efficient for controlling the wind excitation. Nonlinear viscous 

dampers are also available in industry but because of the 

complexity in their design, they are not economic and 

consequently rarely have been used in civil engineering. 

Generally speaking, in seismic application, it is not proper 

to choose passive systems with a constant character to control 

a system response where there is an inconsistent response 

content (maximum acceleration and frequency content) [7]. In 

fact, increasing the damping ratio in linear damping devices 

cannot dissipate the internal energy appropriately, and 

moreover, they transfer the total forces through themselves 

and behave as a rigid element. Consequently, the majority 

amount of force will be transferred to the connection (where 

the device is connected to the structure) which can cause 

damage to the damping device or the structure member. The 

parameter of an optimum damping coefficient in control 

system-devices cannot easily be obtained by a simple 

calculation. A study by Patel and Jangid showed that the 

optimizing condition requires to solve a forth-degree equation 

which is quite complex [5]. Therefore, this paper is studying a 

simple method to find the appropriate and optimum 

parameters of a viscous damper.  

Theory of control has an optimum algorithm and the 

fundamentals of this theory are satisfying all the concepts and 

assumptions in civil structures.  Recently, the theory of control 

was used by Gluck and Reinhorn to find the best location of 

linear dampers in a multi-story structure and to specify their 

constant damping coefficient [2]. In this study, theory of 

control with LQR algorithm is used in MATLAB 

programming to model the dynamic excitation of the whole 

system that includes the effect of active control vibration [3]. 

The performance of the suggested optimum passive damper is 

then compared to performance of an active damper in the 

same structure.    

III. MODEL MANIFESTATION OF A DAMPING SYSTEM 

The theory of this project focuses on a new approach to 

optimize damping ratio of a structure by utilizing the nonlinear 

relationship of viscous dampers. A linear damping system has 

variable energy dissipation while the structure is going back 

and forth during its oscillation. According to Fig. 1, in a linear 

damping system, the damping force is variable and it changes 

from zero to the maximum. Making the damping force 

approximately uniform and uniform to its possible maximum 

amount regardless of the position of the structure is the 

solution to gaining maximum energy dissipation in a system. 

Considering the various amount of velocities while the 

structure is oscillating, a nonlinear damper is required to 

eliminate this variation on the damping force. As a schematic 

view, this kind of system can be designed with parameters 

which can convert the sinusoid form of the damping force to 

rectangular form (Fig. 1). 

Similarly, in active control systems, if the time-optimal 

control problem is normal, the components of the optimal 

control force are a piecewise constant function of time. Such 

functions are known as bang-bang and the preceding statement 

is referred to as the bang-bang principle [4]. The implication 

of the bang-bang principle is that the time-optimal control is 

obtained by exerting maximum control force until the target 

set is reached [4]. 

 

 

Fig. 1 Maximum damping in non-linear damping system by 

providing a uniform damping system over a longer time  

 

Considering a nonlinear damping coefficient in a damper, 

an optimum-damping coefficient can be obtained as follows: 
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where fd (t) is the damping force, C is the optimum-damping 

coefficient, u is the position of stroke in viscous dampers and 

u° is velocity of the stroke in the damper.  

From (1), it can be concluded that damping coefficient 

changes with time and its value decreases to keep the damping 

force within the criterion where the internal force is at a 

minimum level while the amount of energy dissipation is 

maximum. Inversely, to prevent a decrease in the amount of 

energy dissipation, the damping coefficient can be increased to 

gain the maximum possible damping in the structure. The 

nature of damping device inevitably applies constraints and 

the damping coefficient hence needs to satisfy the lower and 

upper bounds as the following: 

 

max
)(

min
CtCC <<

         (2) 
 

The optimum characteristics of this system can be 

determined by LQR control algorithm. In this research, two 

kinds of performance are considered for the control system. 

First, the structure must have minimum displacement in the 

point of interest. Second, an optimization scheme is needed to 

be developed to minimize the internal force of the controlling 

system. A MATLAB code was developed to model a SDOF 

frame shown below that is connected to an active control 

system and excited by an earthquake record (El Centro 

Earthquake – USA 1979). 
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Fig. 2 Response of an active control system during El Centro 

Earthquake excitation and comparison to a response of a linear 

damping system 

 

An optimum damping coefficient may be obtained from (1) 

consideration the damping force is equal to active control 

force. The variation of the damping coefficient for the top 

damper is shown in Fig. 3. In this figure, the value of “1” 

represents the optimum constant damping coefficient for the 

damper.  

 

 

Fig. 3 The variation of damping coefficient in an optimum damping 

system   

IV. VARIABLE VISCOUS FLUID DAMPER 

In most structures, even a relative low damping can also 

provide a significant energy dissipation which considerably 

decreases the vibration of a structure. The description below 

explains how a nonlinear characteristic is required for a 

damping system to optimize the vibration of a simple moment 

frame.  

When the frame has flexed a maximum amount from its 

normal position, the velocity of structure decreases and 

therefore the related damping performance decreases 

significantly (Based on (1)). As the frame flexes back, the 

maximum damping force occurs when the velocity reaches its 

high value. This is the moment in which the column passes its 

natural position. To maintain the level of optimum damping 

performance, a variable cross section property may be used to 

provide the required variation. However, the produced 

damping force in these dampers is dependent upon the 

location of their strokes. Consequently, the application of 

these dampers is limited and cannot be adapted for different 

structures, different excitation content and even different 

locations in a structure.  

However, a better expression of the characteristics of a non-

linear damper can be obtained. Since velocity is the first 

derivation of displacement, if we consider a sinusoid behavior 

model like sin (α) for displacement response, then velocity 

will have a similar shape with a certain different phase as 

following: 

 

)2/sin()cos()sin( maxmaxmax πωωωωω −==⇒= tutuutuu
o

     (3) 

 

Fig. 4 shows the velocity and displacement of a single 

degree oscillator that has stiffness and damping during the 

excitation of El Centro earthquake. In this figure, the amounts 

of responses are normalized to the maximum values and 

velocity and displacement are shown in the same figure. The 

different phase of displacement and velocity can be observed 

in this figure. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Normalized displacement and velocity in the left – A zoomed-

frame for the same figure only in 10 seconds 
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Considering a minimum damping for a control system as 

Cmin, a non-linear relation in terms of velocity and 

displacement can be obtained as the following: 
 

)/()/
2

()/( maxmaxmax

οοοοπ
uuCosuuSinuuSin =−≈  

maxmax /))/sin(( οο uuuuArcCos =  

maxmax ))/sin((/ οο uuuArcCosu =  

maxmaxminmaxmin ))/sin((/ DfuCuuArcCosuC =×=× οο

        (4) 
 

Therefore the non-linear damping coefficient “C*” is 

defined and cumulative energy loss can be obtained from (5); 

 

  ))/sin(/(cos( maxmin

* uuArcCC =  

     ∑∑∑ ×=×=×= uuCzuCufU DD

οο
..

*
maxminmaxmax         (5) 

 

Equation (5) further can be used to make a comparison 

between the results of the active damping system and the 

damping system which theoretically governs this equation. 

V.  EXPECTED RESULT 

Using a fluid viscous damper with a variable damping 

coefficient (obtained from (5)), it is expected that the damping 

performance become more uniform (Fig. 1) and therefore can 

increase energy dissipation in the system when comparing to 

the performance of a system with a linear damping coefficient. 

To compare the results of these damping systems (a Linear, a 

Non-linear, an Active system), a single degree oscillator is 

considered and analyzed in a time-history analysis program 

using MATLAB program. The results are compared between 

the three same structures (oscillator with same damping and 

stiffness property) with different damping systems. One is 

isolated by the active control system, the other is isolated by 

the linear dampers (with constant damping coefficient) and the 

last one is isolated by the nonlinear dampers (with variable 

damping coefficient).  

Obviously, active system performance is expected to be the 

most optimum and according to the LQR algorithm, the active 

system can control the structure’s responses with the 

minimum damping force in the system. Therefore, in this 

comparison, the maximum damping force is the limit for all 

cases and should not be exceeded. Therefore, the maximum 

possible damping force for all damping system is the same.  

Evaluation and comparison of how structure responses are 

controlled by an active control system versus a linear or non-

linear system are presented in Fig. 5. According to the damped 

energy plot in Fig. 5, the energy loss, which is calculated by 

multiplying damping force to the displacement vector, is 

greater in non-linear passive control system than other 

systems. Since the value of maximum damping force in all 

three cases (i.e. active control, passive control with linear 

behavior and passive with non-linear behavior) were equal, it 

can be concluded that the only reason for having more energy 

loss is the non-linearity characterization of the damper. 

 

 

Fig. 5 Damped energy by control systems 

VI. A SUGGESTED MODEL 

The proposed schematic design of viscous fluid damper is 

independent of the position of the stroke in the damper. Fig. 5 

shows a variable behavior in a viscous damper based on the 

variable velocity response of structure. Since the velocity 

increases, the internal pressure increases simultaneously.  The 

internal pressure dictates the expansion in the orifice and 

makes viscous flows through the bypass easier. The friction 

between flow and the orifice produces the damping ratio in 

this viscous damper. 
 

 

Fig. 6 Variable damping coefficient due to orifice expansion 

 

Since the internal force in viscous dampers is directly 

related to velocity of the stroke inside, an elastic orifice 

(opening) sensitive to internal pressure of the damper is the 

proposal to achieve a variable damping coefficient. Therefore, 

while the velocity of the structure tends to increase, increase in 

the internal pressure of the damper causes the orifice to 

expand and the damping coefficient to decrease. Inversely, 

while the velocity of the structure decreases, the decrease in 

the internal pressure causes the orifice return to its original 

shape, thus increasing the damping coefficient. 

VII. CONCLUSION 

Theoretically, with the use of a control algorithm and the 

analysis of the structural response, a velocity/displacement  

dependent  relationship  can  be  determined  for  the  

characteristics  of  damping systems, which is optimum in 

regards to maximizing energy dissipation and minimizing the 

internal force and response of the structure (Displacement, 

Velocity or Acceleration). For the design of such a damping 

system, a fluid viscous damper has been chosen because of 

broad applications of this device in seismic and wind isolation. 
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Since internal force in a fluid viscous damper is directly 

related to the stroking velocity of the damper, an elastic orifice 

(opening) that is sensitive to the internal pressure of the 

damper is a simplified and suggested model which may 

provide a variable damping coefficient. Therefore, whenever 

the velocity of the stroking damper tends to increase, the 

resultant increase in the internal pressure of the damper causes 

the orifice to open and, in turn, the damping coefficient to 

decrease. Inversely, while the stroking velocity of the damper 

decreases, the decrease in the internal pressure causes the 

orifice to return to its original shape, increasing the damping 

coefficient. The characteristics of this damper is highly 

variable and will be efficient in both seismic and wind 

isolation. The suggested damper is just a simplified model and 

it needs to be investigated in more depth. However, the design 

of such damper is beyond the main scope of this study. 

Comparing the results from the above graphs, it can be 

concluded that the proposed system (variable damping system) 

has better performance in system response control (controlling 

the displacement) than the linear system. According to the 

energy dissipation plot, the energy loss is greater in the non-

linear damping system than other cases. Finally, it can be 

concluded that the only reason for having more energy loss in 

variable damping case is the non-linear characterization of the 

damping system. 
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