
 

 

 
Abstract—Novel wind-lens turbine designs can augment power 

output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used 
to form large and complex structures from a Carbon Fiber Reinforced 
Polymer (CFRP) composite. Typically, wind-lens turbine structures 
are fabricated in segments, and then bonded to form the final structure. 
This paper introduces five new adhesive joints, divided into two 
groups: one is constructed between dry carbon and CFRP fabrics, and 
the other is constructed with two dry carbon fibers. All joints and 
CFRP fabrics were made in our laboratory using VARTM 
manufacturing techniques. Specimens were prepared for tensile testing 
to measure joint performance. The results showed that the second 
group of joints achieved a higher tensile strength than the first group. 
On the other hand, the tensile fracture behavior of the two groups 
showed the same pattern of crack originating near the joint ends 
followed by crack propagation until fracture. 

 
Keywords—Adhesive joints, CFRP, VARTM, resin transfer 

molding.  

I. INTRODUCTION 

OMPOSITE materials have high stiffness-to-weight and 
strength-to-weight ratios, and have been used for many 

applications including aerospace, automotive, and wind turbine 
structures [1], [2]. The wind-lens, a curved ring around the 
turbine blades, is manufactured from six identical parts joined 
together to form the final structure. Consequently, its 
performance depends not only on material properties but also 
on the joining technique. As such, structural integrity depends 
critically on the efficiency of this technique. Composite 
structure connections depend on many factors such as size, 
design, available technology, and logistical limitations [3], 
[10]. Therefore, the performance and failure modes of different 
joint types, including composite-to-composite [4]–[6] and 
composite-to-other materials [7]–[9], have been extensively 
studied both numerically and experimentally.  

Bonded joints have mechanical advantages over bolted joints 
because fibers are not cut, and stresses are transmitted more 
homogenously. However, the strength and durability of bonded 
joints strongly depend on various factors such as surface 
preparation, joint-end configuration, fiber angles, overlap 
length, and process parameters [10], [11]. Because the interface 
is usually, the weakest part of a structure, most reported 
methods have aimed to improve the strength of the adhesive or 
adhesive–composite interface. However, if the adhesive or 
adhesive–composite interface can be avoided altogether, the 
strength could be further improved. 

This paper introduces various adhesive bonded joints, made 
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of Carbon Fiber Reinforced Polymer (CFRP), for use in 
offshore wind-lens structures. The main objective of this work 
was to develop high-strength joint applicable to offshore 
wind-lens structures. The strengths of five joints were assessed. 
All joints and CFRP material tested in this study were made 
using a technique developed from the Vacuum-Assisted Resin 
Transfer Molding (VARTM) process. 

II. EXPERIMENTAL WORK 
The composite material was CFRP, consisting of a carbon 

fabric hardened with a resin. All CFRP fabrics were produced 
using VARTM. The entire process comprised three steps: 
fabricating a vacuum package, infusing the resin and molding. 
The structure of the vacuum package used in the experiment is 
shown in Fig. 1 (a). A solid mold, covered with a piece of peel 
ply, was used. Four layers of stitched unidirectional 
carbon-fiber fabric (from Saertex GmbH & Co. KG, the carbon 
fiber is TENAX STS, the stitching material is PES) with 30 cm 
in length were laid on the peel ply and then covered by another 
piece of peel ply. The horizontal direction of Fig. 1 (a) was the 
fiber direction. A small piece of distribution medium, a kind of 
mesh, was placed on the peel ply to promote the flow of resin. 

The inlet for infusion, which was composed of a rubber 
connecter and a segment of spiral tube, was positioned on the 
distribution medium. The vent for air and excess resin 
elimination was positioned on the other side of the inlet. Both 
inlet and vent were composed of a rubber connecter and a 
segment of spiral tube. Since inlet and vent considered very 
critical points in the entire process, they are tightly sealed by 
the sealant tape. Finally, the entire package was enclosed in a 
vacuum bag and sealed with tape. Fig. 1 (b) shows a picture of 
the adopted structure. After establishing a vacuum, degassed 
resin was infused from the inlet. After 40 min, the inlet was 
closed, and the vent was left open until the resin was cured. An 
epoxy resin that could be cured at room temperature (XNR/H 
6815, supplied by Nagase & Co., Ltd.) was used in the 
experiment. The initial viscosity of the resin at 25oC was 260 
MPa s. When the resin was cured completely (about 24 h later), 
the CFRP laminate was removed from the mold. The thickness 
of the plate was about 2 mm.  

Joint strengths were evaluated via tensile testing using 
standardized test specimens [1]. Fig. 2 shows the dimensions of 
the specimens; the total length was 250 mm and the width was 
10 mm. Pairs of GFRP tabs were used to reduce the stress when 
holding each specimen. All specimens are tested using 
SHIMADZU DSS-5000 universal testing machine. Fig. 3 
shows the setup used for the current tensile test. The specimen 
was fixed between the machine’s jaws, and the load-time data 
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multi-overlapped joint, showed higher tensile strength. 
However, joining techniques that use dry carbon fibers are still 
limited for simple shapes, so there are some difficulties for 
applying these techniques for complex curved shapes like wind 
blades and lens as well.  
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