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Abstract—Solar emissions have a high impact on the Earth’s
magnetic field, and the prediction of solar events is of high interest.
Various techniques have been used in the prediction of the solar
wind using mathematical models, MHD models and neural network
(NN) models. This study investigates the coronal hole (CH) derived
high-speed streams (HSSs) and their correlation to the CH area and
create a neural network model to predict the HSSs. Two different
algorithms were used to compare different models to find a model
that best simulated the HSSs. A dataset of CH synoptic maps through
Carrington rotations 1601 to 2185 along with Omni-data set solar
wind speed averaged over the Carrington rotations is used, which
covers Solar Cycles (SC) 21, 22, 23, and most of 24.

Keywords—Artificial Neural Network, ANN, Coronal Hole Area
Feed-Forward neural network models, solar High-Speed Streams,
HSSs.

I. INTRODUCTION

THE study of space weather has a crucial role in modern

technology development, as these technologies require

a full understanding of space weather, and its effects on

satellites and Earth as well. Geomagnetic disturbances have

destructive effects on modern space technology and Earth’s

communication system [1]. Solar wind speed (SW) is a

continuous plasma flow into the interplanetary magnetic field,

the interaction of this high-speed flow causes disturbance in

the Earth’s magnetic field [2]. The High-Speed Solar Wind

Streams (HSSs) are emitted from the Coronal Holes (CHs)

[3], which are dark areas with reduced temperature than their

surroundings on the solar corona [4]. The interaction between

the slow SW speed and the coronal hole-related HSSs results

in a shock region occurring due to the co-rotation of the sun

(CIR) [5].

Various research groups used different methods to study

the relationship between the HSSs and coronal hole area

(A). Statistical studies are performed on single low latitude

CHs and their correlation to the peak velocity of the coronal

hole-derived HSSs [6]–[8], while [9] averaged the total area of

coronal holes covering the solar disk from 1967 to 1988 over 3

months, they resulted in a correlation with the 3-month average
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of the measured HSSs. These studies showed a correlation

between the area traversed by the central meridian CH and

the HSSs. The magnitude of the correlation coefficient (cc)

depends on the solar cycle of the studied period. Besides, the

location of the coronal hole, the highest cc was detected in the

declining and uprising phases of the solar cycle [10], [11].

Furthermore, [10] extended their study to a period

of a low CME activity, the declining phase of cycle

23 to obtain cross-correlation functions to forecast the

solar wind parameters. In addition, they deduced that the

meridional-located CH correlates fairly with the HSSs peak

velocity, while [9] and [12] deduced that depending on the

location of the coronal hole, the correlation decreases with the

elimination of polar CHs. Also, they correlated the meridional

CHs with the Dst index generated from the impact of the

fast solar wind streams. To study this relationship within a

wide range of data, [3] spread out to analyze the variations of

CH-related HSSs for the solar cycles 23 and 24, which showed

a constructive correlation between the maximum values of

both CH and solar wind speed with larger values of cc for

the solar cycle 23 than 24 as a result of the larger area for CH

and faster SW flow in the cycle 23.

An Artificial Neural Network (ANN) is a simulation of

the human brain with its complexity and ability to process

information and transmit it to the neurons and receptors

[13]. Throughout an activation function, it transmits data

from an input layer to artificial nodes (neurons) connected

to a weighted sum [14]. Recently, various ANN models

with different algorithms were developed to solve non-linear

systems problems [15]. ANN techniques are widely used in

the study of space weather due to their ability to analyze

large data sets and compute non-linear relationships with high

accuracy [1]. Different ANN techniques were used by various

research groups to predict solar activity, geomagnetic activity,

communication activity, and the satellite drag effect [1], [16].

The Feed forward back propagation (FFBP) network

is a simple basic form of ANN [15]. Two models of

FFBP are implemented using the Levenberg-Marquardt (LM)

and Bayesian-Regularization (BR) algorithms to obtain the

best-performing network for our data set.

The network is based on predicting the solar HSSs over a

Carrington Rotation (CR) average for the period CR:1601 to

CR:2185 using the CH area data set as an input parameter. The

CH area dataset is obtained from Oulu University Archive, SW

data with a one-day resolution are available on the Omni-Web

dataset.
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Fig. 1 SW speed averaged over the Carrington rotation from CR:1601 to
CR:2185 on the y-axis; the CR on the x-axis

Detailed information about the dataset and the network

implementation is represented in Section II, and Results and

Discussion in Section III.

II. METHODOLOGY

A simple feed-forward with back-propagation technique

is used to create a prediction model for the HSSs. A

comparison between the Bayesian Regularization (BR) and the

Levenberg-Marquardt (LM) algorithms to show the difference

between them in terms of the Root Mean Square Error (RMSE)

and correlation between target and output (R-value), the model

implementation and the choice of hyperparameters are detailed

in Section II-B. Data analysis performed on the CH and SW

datasets are explained in Section II-A.

A. Data Acquisition and Analysis

An interval of 44 years (1973-2017) that covers SCs

21,22,23 and most of SC 24 is used in this study. Solar

wind data are obtained from the NASA/NSSDC OMNI dataset

[17]. The SW dataset was averaged over a Carrington rotation

average, and then we added two filtration steps. First, we used

the Richardson and Cane catalog for CME, and CIR [18]

which classifies the solar wind into four categories using a

numbering code, where: (1) CME/Interplanetary-CME related

flow. (2) HSSs, with SW speed V > 450 Km/s. (3) Slow

solar wind. (4) Unclear event. We used this categorization

to exclude CME-driven, unclear events, and the slow SW;

thus the analysis focuses only on the CIR-associated HSSs.

Afterward, due to the lack of data between the years 1983 and

1994, another filtration is applied to the dataset to exclude the

CR of more than 25% missing data. A representation of the

SW on a CR averaged is illustrated in Fig. 1.

Within the same interval, the CH area dataset for each CR

has a total of 586 Carrington rotations starting from CR:1601

to CR:2185. CH area is obtained from a developed list [19]

using the SOHO/EIT and SDO/AIA homogeneous synoptic
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Fig. 2 CH area on the y-axis with the Carrington rotations on the x-axis

Fig. 3 Single layer FFBP Network architecture consisting of an input layer,
hidden layer of 6 neurons, and an output layer

maps and the McIntosh archive (McA) [20]. These data are

represented in Fig. 2.

B. Neural Network

A supervised learning algorithm is used in our ANN; the

back-propagation technique is mostly used; it automatically

updates the weights with gradient vector [14]. A single-layer

FFBP network is used, which consists of an input layer, one

hidden layer, and an output layer, as represented in Fig. 3.

The inputs are divided into training, validating, and testing

sets. The hidden number of nodes is defined by a comparison

between the root mean squared error of the training set (RMSE

train) and the testing set (RMSE test). The difference between

the RMSE-test and RMSE-train is referred to as the Δ-RMSE.

The criterion for choosing the number of nodes is basically

testing the network over several numbers of neurons (n) and
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Fig. 4 Comparison between the RMSE-train, RMSE-test, and the R-value
(from the top on the y-axis) with the number of neurons on the x-axis for

the LM-algorithm; the black vertical arrow points out to the best number of
neurons

choosing the lowest value of Root Mean Square Error (RMSE)

that corresponds to the highest correlation factor (R-value).

For the LM algorithm, the dataset is divided into a 70%

training set, a 15% validating set, and a 15% testing set. The

network is tested over (1-20) neurons to validate the model’s

best number of neurons. Fig. 4 illustrates the RMSE-train,

RMSE-test, and the R-value over a number of hidden neurons

(n). The best n represents the highest R-value with the lowest

RMSE-train and RMSE-test (vertical arrow). This model’s

optimum number of neurons is n = 7, as it presents the least

RMSE value with the highest R-value. Lower values of RMSE

can be seen in this figure, but it is advisable to choose the first

minimum of RMSE that corresponds to a peak in the R-value

to avoid the over-fitting of the model [21].

For the BR-algorithm, the same criterion was applied but

for the dataset division, it is divided into a training set of 75%

and a testing set of 25%. This is because the Br-algorithm can

perform the validation process on datasets with a low chance

of over-fitting due to its statistical process [22]. An illustration

of the RMSE-train, RMSE-test, and the R-value over a number

of hidden neurons (n) for the BR-algorithm is represented in

Fig. 5 showing the best (n) for this model (vertical arrow).

III. RESULTS AND DISCUSSION

After the implementation of each model, we present each

model by plotting the regression between the real and

predicted SW for the training, testing, and validating (if exist)

sets, this is represented in Fig. 6 for the LM-model, and Fig.

7 for the BR-model.

The comparison between the models depends on two

aspects, the RMSE, and the R-value. The phase of the result,

whether it is training or testing, indicates that the better the

testing results, the better the model is [23]. The training set

is essential for the learning process. Its results show how far

the model can learn the relationship between the inputs and

outputs, while the testing set shows how the model will be

able to predict new data after the learning process.
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Fig. 5 Comparison between the RMSE-train, RMSE-test, and the R-value
(from the top on the y-axis) with the number of neurons on the x-axis for

the BR- algorithm; the black vertical arrow points out to the best number of
neurons

TABLE I
RMSE RESULTS OF (LM) AND (BR) ALGORITHMS

algorithm RMSE-train (km/s) RMSE-test (km/s) Δ-RMSE n
LM-algorithm 41.9341 50.5205 8.5864 7
BR-algorithm 45.2372 47.6045 2.3673 6

TABLE II
CORRELATION RESULTS OF (LM) AND (BR) ALGORITHMS

algorithm R-train R-test R-value n
LM-algorithm 0.57473 0.3383 0.5155 7
BR-algorithm 0.48765 0.4056 0.4697 6

An illustration of the RMSE results (training and testing)

for the (LM) and (BR) models is represented in Table I, and

the resulting correlation for each set is presented in Table II.

These results show a lower RMSE-test for the BR- model

than the LM- model, while for the RMSE-train, a lower RMSE

value is for the LM-model. While, for the correlation scale, the

BR- model shows a better correlation than the lm-model in the

testing phase. On the other hand, the LM-model has a higher

correlation in the training phase and the overall correlation.

Fig. 6 shows the linear regression results for the training,

validation, and testing sets, and the overall regression between

the target (real SW speed), and the output (predicted SW

speed) and shows the correction equation on the y-axis of

each graph. By the same token, Fig. 7 represents the linear

regression for the training, and testing sets and the overall

regression between the target and the output result.

IV. CONCLUSION

Although the overall correlation is higher in the LM-model

and the training RMSE and R-value results are better, but also

Δ-RMSE is of a higher value. Thus, the difference between

training and testing RMSE results is higher. However, in the

case of the BR-model, the testing RMSE and R-value results

are better than the LM-model, and the Δ-RMSE is much

lower than that of the LM-model. The variable Δ-RMSE is

an indicator of the consistency of the network, the closer gap
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Fig. 6 Training, validation, testing, and overall regression between the real
and resulted data for the LM-algorithm

350 400 450 500 550 600
Target

350

400

450

500

550

600

O
ut

pu
t ~

= 
0.

24
*T

ar
ge

t +
 3

.3
e+

02

Training: R=0.48765

Data
Fit
Y = T

350 400 450 500 550 600
Target

350

400

450

500

550

600

O
ut

pu
t ~

= 
0.

17
*T

ar
ge

t +
 3

.6
e+

02

Test: R=0.4056

Data
Fit
Y = T

350 400 450 500 550 600
Target

350

400

450

500

550

600

O
ut

pu
t ~

= 
0.

22
*T

ar
ge

t +
 3

.4
e+

02

All: R=0.46972

Data
Fit
Y = T

Fig. 7 Training, testing, and overall regression between the real and resulted
data for the BR-algorithm

between the RMSE-train and RMSE-test shows more reliable

output results of the network, even with a slightly higher

overall correlation. When it comes to the prediction, the model

should have better testing results as they are speaking of the

ability of the model to blindly predict the desired output.

Thus, we can conclude that the BR-model is considered a

better-performing prediction model as it has better results in

the testing phase, which means that it can predict the target

more accurately than the LM-model. The BR- model can

predict the SW speed using the CH area with a correlation

coefficient of 0.46972 and an RMSE of 45.5326 km/s.

Moreover, the LM-model has better results in terms of the

correlation between the input real SW speed and the predicted

output. It can predict the SW speed through the CH area as

an input to the network with a correlation of R= 0.5155 and

an error of RMSE= 44.2169 km/s.

Overall, there is a slight difference in the values of the

R-value and the RMSE between both models. Although

the BR-model has a better prediction performance than the

LM-model, the LM-model has a higher correlation than the

BR- model. These findings are confined to the used dataset,

and the choice of the model depends on the type and length

of the data.
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B. Vršnak, “The dependence of the peak velocity of high-speed solar
wind streams as measured in the ecliptic by ace and the stereo satellites
on the area and co-latitude of their solar source coronal holes,” Journal
of Geophysical Research: Space Physics, vol. 123, no. 3, pp. 1738–1753,
2018.

[6] J. Nolte, A. Krieger, A. Timothy, R. Gold, E. Roelof, G. Vaiana,
A. Lazarus, J. Sullivan, and P. McIntosh, “Coronal holes as sources
of solar wind,” Solar Physics, vol. 46, no. 2, pp. 303–322, 1976.

[7] V. Abramenko, V. Yurchyshyn, and H. Watanabe, “Parameters of the
magnetic flux inside coronal holes,” Solar Physics, vol. 260, no. 1, pp.
43–57, 2009.

[8] N. V. Karachik and A. A. Pevtsov, “Solar wind and coronal bright points
inside coronal holes,” The Astrophysical Journal, vol. 735, no. 1, p. 47,
2011.

[9] Y.-M. Wang and N. Sheeley Jr, “Magnetic flux transport and the
sunspot-cycle evolution of coronal holes and their wind streams,” The
Astrophysical Journal, vol. 365, pp. 372–386, 1990.
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[15] J. Lazzús, P. Vega, P. Rojas, and I. Salfate, “Forecasting the dst index
using a swarm-optimized neural network,” Space Weather, vol. 15, no. 8,
pp. 1068–1089, 2017.

[16] H. Lundstedt, “Progress in space weather predictions and applications,”
Advances in Space Research, vol. 36, no. 12, pp. 2516–2523, 2005.

[17] “Nasa/nssdc omni dataset.” [Online]. Available: https://omniweb.gsfc.
nasa.gov/

[18] I. G. Richardson and H. V. Cane, “Solar wind drivers of geomagnetic
storms during more than four solar cycles,” Journal of Space Weather
and Space Climate, vol. 2, p. A01, may 2012. [Online]. Available:
http://www.swsc-journal.org/10.1051/swsc/2012001

[19] A. Hamada, T. Asikainen, and K. Mursula, “A uniform series of
low-latitude coronal holes in 1973–2018,” Solar Physics, vol. 296, no. 2,
pp. 1–22, 2021.

[20] “Noaa national centers for environmental information,”
mcIntosh archive Dataset. [Online]. Available:
https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-imagery/
composites/synoptic-maps/mc-intosh/

[21] K. Yotov, E. Hadzhikolev, and S. Hadzhikoleva, “Determining the
number of neurons in artificial neural networks for approximation,
trained with algorithms using the jacobi matrix,” TEM Journal, vol. 9,
no. 4, p. 1320, 2020.

[22] F. Burden and D. Winkler, “Bayesian regularization of neural networks,”
Artificial neural networks: methods and applications, pp. 23–42, 2009.

[23] J. M. Caswell, “A nonlinear autoregressive approach to statistical
prediction of disturbance storm time geomagnetic fluctuations using
solar data,” Journal of Signal and Information Processing, vol. 2014,
2014.

[24] “University of oulu database of solar euv and coronal hole synoptic
maps.” [Online]. Available: http://satdat.oulu.fi/solar data

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:18, No:5, 2024 

51International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:1
8,

 N
o:

5,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

63
0.

pd
f


