
 

 
Abstract—In this paper, type-2 fuzzy logic control (T2FLC) and 

neuro-fuzzy control (NFC) for a doubly fed induction generator 
(DFIG) based on direct power control (DPC) with a fixed switching 
frequency is proposed for wind generation application. First, a 
mathematical model of the doubly-fed induction generator 
implemented in d-q reference frame is achieved. Then, a DPC 
algorithm approach for controlling active and reactive power of 
DFIG via fixed switching frequency is incorporated using PID. The 
performance of T2FLC and NFC, which is based on the DPC 
algorithm, are investigated and compared to those obtained from the 
PID controller. Finally, simulation results demonstrate that the NFC 
is more robust, superior dynamic performance for wind power 
generation system applications. 

 
Keywords—Doubly fed induction generetor, direct power control, 

space vector modulation, type-2 fuzzy logic control, neuro-fuzzy 
control, maximum power point tracking. 

I. INTRODUCTION 

ANY of the wind turbines installed today are equipped 
with DFIG. However, most of these machines are 

connected directly to the network to avoid the presence of a 
converter. The major advantage of these facilities lies in the 
fact that the power rate of the inverters is around the 25 % - 30 
% of the nominal generator power [1], [2]. 

Essentially, the DFIG is a wound rotor induction generator 
(WRIG) whose stator windings are connected to the grid 
directly and rotor windings connected to the grid through back-
to-back converter. A schematic diagram of variable speed wind 
turbine system with a DFIG is shown in Fig. 1. Control 
strategies of DFIG have been discussed in literatures [3], [4]. 
Control of DFIG through the Field Oriented Control (FOC) 
which is performed by rotor currents control has been 
developed in [5]. FOC method depends on parameters variation 
and its power dynamics can be influenced by these variations. 
Although, DFIG control using Input-Output Feedback 
Linearization method can operate below and above 
synchronous speed, but complication of control method and 
dependence on parameters are its disadvantages. 

DPC strategy, as an alternative, has been introduced to the 
DFIG based wind power generation, the basic theory of DPC 
has been described in detail in [6], same as the well-known 
direct torque control strategy, the basic DPC has the demerits 
of large torque and current ripple and variable switching 
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frequency, a space vector modulation based constant switching 
frequency DPC method is proposed in [7] to solve the previous 
problems, and some compensation method is proposed as well 
to improve the system performance. Further, three improved 
DPC methods, with different control targets, for DFIG control 
system have been discussed and implemented in [8]. During 
the past decade, various adaptive and robust controllers, based 
on variable structure controller [9], and fuzzy-neural 
techniques [10], [11] are proposed for electrical drives. Neuro-
fuzzy systems combine the advantageous of neural networks 
and fuzzy logic systems. 

In [12], the author has presented a model reference adaptive 
system (MRAS) speed estimator for speed sensorless direct 
torque and flux control (DTFC) of an induction motor drive 
(IMD), has proposed tow topologies based in Type-1 fuzzy 
logic controller (T1FLC) and T2FLC to achieve high 
performance sensorless drive in both transient as steady state 
conditions. In [13] a statistic study has proposed, which based 
on applications of fuzzy logic in renewable energy systems 
between 1994 until 2014, it is clear that the wind energy have 
big importance in these researches using neuro fuzzy, fuzzy 
particle swarm optimization, fuzzy genetic algorithms in 
simulation and experimental.  

In this paper, T2FLC and NFC are used for adjusting rotor 
current of DFIG. This paper is organized as follows; firstly, the 
modeling of the turbine is presented in Section II. In Section 
III, the mathematical model of DFIG is given. Section IV 
presents DPC of DFIG which is based on the orientation of the 
stator flux vector along the axis ‘d’. The NFC and T2FLC are 
established to control the rotor currents are represented in 
Section V and Section VI, respectively. In Section VII, 
computer simulation results are shown and discussed. Finally, 
the reported work is concluded. 

II. MODEL OF THE TURBINE 

The wind turbine input power usually is: 
 

∗ ∗ ∗                                                                  (1) 
 

where  is air density;  is wind turbine blades swept area in 
the wind;  is wind speed.  

The output mechanical power of wind turbine is: 
 

∗ ∗ ∗ ∗ ∗                                        (2) 
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TABLE IV 
PARAMETERS OF THE TURBINE 

Rated Power: 10 Kwatts 

Number of Pole pairs: P= 3 

Blade diameter R= 3m 

Gain: G=5.4 

The moment of inertia Jt=0.00065 kg*m^2 

Friction coefficient ft=0.017 N*m/sec 

Air density: ρ=1.22 Kg/m^3 

VIII. CONCLUSION 

In this paper neuro-fuzzy logic control and T2FLC for 
DFIG based on DPC with a fixed switching frequency have 
been proposed for wind generation application. DPC via SVM 
strategy has been achieved by adjusting active and reactive 
powers and rotor currents. The performances of NFC and 
T2FLC which is based on the DPC algorithm has been 
investigated and compared to those obtained from the PID 
controller for power control. The results obtained by the 
validation platform using the 	/	 ®, have 
shown that the NFC has high efficiency, low error, very short 
response time, high dynamics for wind generation. 
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