Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30011
Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: Air pollutants, computational fluid dynamics, dispersion, simulation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108252

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF

References:


[1] Environmental Protection Agency of Romania, Integrated Environmental Authorization 2013.
[2] ANSYS CFX-Solver Theory Guide, ANSYS Ltd., 2006.
[3] N. Ashgriz, J. Mostaghimi, An Introduction to Computational Fluid Dynamics, in: J. Saleh (Ed.), Fluid Flow Handbook, McGraw-Hill Professional, 2002, pp.24.1–24.52.
[4] Ruifeng Qi, Dedy Ng, Benjamin R. Cormier, M. Sam Mannan, Numerical Simulations of LNG Vapor Dispersion in Brayton Fire Training Fieldtests with ANSYS CFX, Journal of Hazardous Materials, 2010.
[5] M.J. Ivings, S.F. Jagger, C.J. Lea, D. M. Webber, Evaluating Vapor Dispersion Models for Safety Analysis of LNG Facilities, Health & Safety Laboratory, UK, 2007.
[6] ANSYS CFX-Post User’s Guide, ANSYS Ltd., 2006.
[7] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Second ed., Prentice Hall, 2007.
[8] H. A. Olvera, A. R. Choudhuri, Numerical Simulation of Hydrogen Dispersion in the Vicinity of a Cubical Building in Stable Stratified Atmospheres, Int. J. Hydrogen Energy 31 (2006) 2356–2369.
[9] Release 11.0 Documentation for ANSYS Workbench, ANSYS Ltd., 2006.
[10] M.M. Foss, Introduction to LNG: An Overview on Liquefied Natural Gas (LNG), It Properties, Organization of the LNG Industry and Safety Considerations, Center for Energy Economics, University of Texas at Austin, Houston, TX, 2007.
[11] G. Lazaroiu, The impact of CHP on the Environment, Politehnica Press, Bucharest 2005.
[12] F. Gavelli, E. Bullister, H. Kytomaa, Application of CFD (fluent) to LNG Spills into Geometrically Complex Environments, J. Hazard.Mater.159 (2008) 158–168.
[13] S. Sklavounos, F. Rigas, Simulation of Coyote Series Trials—Part I: CFD Estimation of Non-Isothermal LNG Releases and Comparison with Box-Model Predictions, Chem. Eng. Sci. 61 (2006) 1434–1443.
[14] A. Luketa-Hanlin, R. P. Koopman, D. L. Ermak , On the Application of Computational Fluid Dynamics Codes for Liquefied Natural Gas Dispersion, J. Hazard. Mater.140 (2007) 504–517.
[15] B. Blocken, T. Stathopoulos, J. Carmeliet, CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems, Atmos. Environ. 41, (2007) 238–252.
[16] T. C. Brown, R. T. Cederwall, S. T. Chan, D. L. Ermak, R. P. Koopman, K. C. Lamson, J. W. McClure, L.K. Morris, Falcon Series Data Report: 1987 LNG Vapor Barrier Verification Field Trials, Lawrence Livermore National Laboratory, June 1990, UCRL-CR-104316.
[17] S. P. Arya, Introduction to Micrometeorology, Second ed., Academic Press, 2001.
[18] H. A. Panofsky, J. A. Dutton, Atmospheric Turbulence: Models and Methods for Engineering Applications, Wiley, New York, 1984.
[19] T. C. Brown, R. T. Cederwall, S. T. Chan, D. L. Ermak, R. P. Koopman, K. C. Lamson, J. W. McClure, L. K. Morris, Falcon Series Data Report: 1987 LNG Vapor Barrier Verification Field Trials, Lawrence Livermore National Laboratory, June 1990, UCRL-CR-104316.
[20] P. J. Richards, R. P. Hoxey, Appropriate Boundary Conditions for Computational Wind Engineering Models using The k–Turbulence Model, J. Wind Eng. Ind. Aerodynam. 46–47 (1993) 145–153.
[21] Regional Agency for Environmental Protection Bucharest, Integrated Environmental Authorization for Grozavesti CHP, Nov. 2007, 17-20.
[22] G. Lazaroiu, Modeling and Simulating Combustion and Generation of NOx, Fuel Processing Technology Volume: 88 Issue: 8 Pages: 771-777.
[23] V. Cenusa, H. Petcu, Electricity Production from Fossil Fuels, Applications, 2005.
[24] Google Maps, (www.google.ro/maps/location), Bucharest, Grozavesti CHP, Satellite view, 2014.
[25] H. W. Coleman, F. Stern, Uncertainties and CFD code validation, J. Fluids Eng.119 (1997) 795–803.
[26] J. Tu, G. H. Yeoh, C. Liu, Computational Fluid Dynamics—A Practical Approach, Butterworth–Heinemann, Oxford, UK, 2008.