In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.<\/p>\r\n","references":"[1]\tR. Pena, et al., \u201cDoubly Fed Induction Generator using Back-to-Back PWM Converter and Its Application to Variable-Speed Wind\u2013Energy Generation\u201d, IEE Proc. B, vol. 143, no.3, pp.231-241,1996.\r\n[2]\tS. Muller, M. Deicke, R.W. D. Doncker, \u201cDoubly fed induction generator systems for wind turbines\u201d, IEEE Industry Application Magazine, Vol.8, No.3, pp. 26-33.2002.\r\n[3]\tJ. Ben Alaya, A. Khedher and M. F. Mimouni, \" DTC, DPC and Nonlinear Vector Control Strategies Applied to the DFIG operated at Variable Speed\", Journal of Electrical Engineering (.lEE), vol. 6, no II, pp. 744-753,2011.\r\n[4]\tLuna, F. K. A Lima, P. Rodriguez, E. H. Watanabe and R.Teodorescu, \"Comparison of Power Control Strategies for DFIG Wind Turbines\", IEEE Trans on Energy Conversion, pp. 2131-2136, 2008.\r\n[5]\tAG. Abo-Khalil, G. Ahmed, \"Synchronization of DFIG output voltageto utility grid in wind power system\", Renewable Energy 44, pp. 193-198,2012.\r\n[6]\tL. Xu, P. Cartwright. \u201cDirect Active and Reactive Power Control of DFIG for Wind Energy Generation\u201d, IEEE Trans. on energy conversion, vol.21,pp.750-758. \r\n[7]\tD. W. Zhi, L. Xu. \u201cImproved Direct Power Control of Doubly-Fed Induction Generator Based Wind Energy System\u201d, IEMDC2007,pp.436-441.\r\n[8]\tM. Guo, D. Sun, B. T. He, \u201cDirect Power Control for Wind-Turbine Driven DFIG with Constant Switch Frequency\u201d, ICEMS 2007,pp.1966-1971.\r\n[9]\tQingding, G. Limei. W & Ruifu, L. Robust fuzzy variable structure control of PMLSM servo system, IEEE International conference on intelligent processing systems, Beijing, China. 675-679. 1997.\r\n[10]\tElmas, C., Ustun, O. & Sayan, H. H, A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive.. Expert Systems with Applications, 34.1, 657-664. 2008.\r\n[11]\tG\u00f6kbulut, M., Dandil, B; & Bal, C., A hybrid neuro-fuzzy controller for brushless DC motors. Lecture Notes in Computer Science, 3949. 125-132. 2006\r\n[12]\tTejavathu Ramesh n, AnupKumarPanda, S.ShivaKumar, \u201cType-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive\u201d, ISA Transactions 2015.\r\n[13]\tL. Suganthi a,n, S.Iniyan b, AnandA.Samuel c, \u201cApplications of fuzzy logic in renewable energy systems \u2013 A review\u201d, Renewable and Sustainable Energy Reviews 48, 2015, pp. 585\u2013607.\r\n[14]\tGaillard A, Karimi S, Poure P, Saadate S. Fault tolerant back-to-back converter topology for wind turbine with doubly fed induction generator. International Review of Electrical Engineering Aug. 2007:629\u201336.\r\n[15]\tLie Xu Cartwright P. Direct active and reactive power control of DFIG for wind energy generation. IEEE Transactions on Energy Conversion Sept. 2006;21(3): 750\u20138.\r\n[16]\tHong YY, Lu SD, Chiou CS. MPPT for PM wind generator using gradient approximation. Energy Convers Manage 2009;50:82\u20139.\r\n[17]\tZhi D, Xu L. Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Trans Energy Convers2007;22(1):110\u20138.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 115, 2016"}