Search results for: material properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4206

Search results for: material properties

876 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Heham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposals in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: Durability, glass waste, freeze-thaw cycles, nondestructive test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
875 Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus

Authors: Ryoko Yoshida, Jyunpei Yoshida, Hua Fang Yu, Yasushi Sasaki, Tetsuya Nagasaka

Abstract:

Phosphorous is an important element for agriculture and industry and is a non-renewable resource. Especially, yellow phosphorus is an essential material in advanced industrial technology, but phosphorus resources were not produced in Japan at all, and all depend on imports. It has been suggested, however, that the remaining accessible reserves of phosphate ore will be depleted within 50 years. Therefore, alternative resources for phosphate ore must be found. In this research, we have developed a process that enables the production of high-purity yellow phosphorus from domestic unused phosphorus resources such as steelmaking slags. The process consists of two parts: (1) the production of crude phosphoric acid from wastes such as steelmaking slag; (2) producing high-purity yellow phosphorus by low-temperature carbothermic reduction of phosphoric acid (H3PO4). The details of the carbothermic reduction of phosphoric acid are presented in this paper. Yellow phosphorus is commercially produced by carbothermic reduction of phosphate ore in an electric arc furnace at more than 1673K. In the newly developed system, gaseous P4O10 evaporated from H3PO4 is successfully reduced to yellow phosphorus by using carbon packed bed at less than 1273K. To meet the depletion of phosphate ore, the proposed process in this study to produce yellow phosphorus by carbothermic reduction of H3PO4 that are extracted from dephosphorization slags will be one of the effective and economical solutions.

Keywords: Carbothermic reduction, dephosphorization slags, phosphoric acid, yellow phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
874 Tropical Peat Soil Stabilization using Class F Pond Ash from Coal Fired Power Plant

Authors: Kolay, P.K., Sii, H. Y., Taib, S.N.L.

Abstract:

This paper presents the stabilization potential of Class F pond ash (PA) from a coal fired thermal power station on tropical peat soil. Peat or highly organic soils are well known for their high compressibility, natural moisture content, low shear strength and long-term settlement. This study investigates the effect of different amount (i.e., 5, 10, 15 and 20%) of PA on peat soil, collected from Sarawak, Malaysia, mainly compaction and unconfined compressive strength (UCS) properties. The amounts of PA added to the peat soil sample as percentage of the dry peat soil mass. With the increase in PA content, the maximum dry density (MDD) of peat soil increases, while the optimum moisture content (OMC) decreases. The UCS value of the peat soils increases significantly with the increase of PA content and also with curing periods. This improvement on compressive strength of tropical peat soils indicates that PA has the potential to be used as a stabilizer for tropical peat soil. Also, the use of PA in soil stabilization helps in reducing the pond volume and achieving environment friendly as well as a sustainable development of natural resources.

Keywords: Compaction, Peat soil, Pond ash, Stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3342
873 An Infrared Investigation on Surface Species over Iron-Based Catalysts: Implications for Oxygenates Formation

Authors: Wanyu Mao, Hongfang Ma, Haitao Zhang, WeixinQian, Weiyong Ying

Abstract:

The nature of adsorbed species on catalytic surface over an industrial precipitated iron-based high temperature catalyst during FTS was investigated by in-situ DRIFTS and chemical trapping. The formulation of the mechanism of oxygenates formation and key intermediates were also discussed. Numerous oxygenated precursors and crucial intermediates were found by in-situ DRIFTS, such as surface acetate, acetyl and methoxide. The results showed that adsorbed molecules on surface such as methanol or acetaldehyde could react with basic sites such as lattice oxygen or free surface hydroxyls. Adsorbed molecules also had reactivity of oxidizing. Moreover, acetyl as a key intermediate for oxygenates was observed by investigation of CH3OH + CO and CH3I + CO + H2. Based on the nature of surface properties, the mechanism of oxygenates formation on precipitated iron-based high temperature catalyst was discussed.

Keywords: Iron-based catalysts, intermediates, oxygenates, in-situ DRIFTS, chemical trapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
872 Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source

Authors: Makoto Hasegawa, Seika Tokumitsu

Abstract:

Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources.

Keywords: Blue sky demonstration, sunset color demonstration, white LED torch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
871 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties

Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying

Abstract:

SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.

Keywords: Crystallization, MTO, Si/Al ratio, SSZ-13.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
870 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie

Abstract:

The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.

Keywords: End effect, structural-size torsion test, shear properties, timber engineering, binocular stereo vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
869 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5287
868 Pre-germinated Parboiled Brown Rice Drying Using Fluidization Technique

Authors: Nattapol Poomsa-ad, Lamul Wiset

Abstract:

Pre-germinated parboiled brown rice or Khao hang (in Thai) is paddy which undergoing the processes of soaking, steaming, drying and dehusking to obtain the edible form for consumption. The objectives of this research were to study the kinetic of pre-germinated parboiled brown rice drying using fluidization technique and to study the properties of pre-germinated parboiled brown rice after drying. The dryings were performed at the different temperatures of 110, 120 and 130 oC at the bed depth of 2 cm with the air velocity of 1.98 m/s. The results found that the higher drying temperature led to the faster moisture reduction. After drying until the moisture content of pre-germinated parboiled brown rice was lower than 14%wet basis, samples were taken to determine various qualities such as percentage of head rice and L* a* b* color values. The shade drying was used as a control. The results found that the higher drying temperature resulted in the decrease of head rice percentage. For the color assessment, the trend of L* and a* values was increased with the drying temperature, while the b* value was not significantly difference (p › 0.05) by drying temperatures. However, the b value of drying by fluidized bed dryer was higher than the control.

Keywords: Brown rice, dehydration, fluidized bed, grain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
867 Optimization of Ethanol Fermentation from Pineapple Peel Extract Using Response Surface Methodology (RSM)

Authors: Nadya Hajar, Zainal, S., Atikah, O., Tengku Elida, T. Z. M.

Abstract:

Ethanol has been known for a long time, being perhaps the oldest product obtained through traditional biotechnology fermentation. Agriculture waste as substrate in fermentation is vastly discussed as alternative to replace edible food and utilization of organic material. Pineapple peel, highly potential source as substrate is a by-product of the pineapple processing industry. Bio-ethanol from pineapple (Ananas comosus) peel extract was carried out by controlling fermentation without any treatment. Saccharomyces ellipsoides was used as inoculum in this fermentation process as it is naturally found at the pineapple skin. In this study, the capability of Response Surface Methodology (RSM) for optimization of ethanol production from pineapple peel extract using Saccharomyces ellipsoideus in batch fermentation process was investigated. Effect of five test variables in a defined range of inoculum concentration 6- 14% (v/v), pH (4.0-6.0), sugar concentration (14-22°Brix), temperature (24-32°C) and time of incubation (30-54 hrs) on the ethanol production were evaluated. Data obtained from experiment were analyzed with RSM of MINITAB Software (Version 15) whereby optimum ethanol concentration of 8.637% (v/v) was determined. The optimum condition of 14% (v/v) inoculum concentration, pH 6, 22°Brix, 26°C and 30hours of incubation. The significant regression equation or model at the 5% level with correlation value of 99.96% was also obtained.

Keywords: Bio-ethanol, pineapple peel extract, Response Surface Methodology (RSM), Saccharomyces ellipsoideus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6052
866 Analysis of Hard Turning Process of AISI D3-Thermal Aspects

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of  hard turning by using commercial software DEFORM 3D has been compared to experimental results of  stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.

Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
865 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
864 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
863 Influence of Active Packaging on the Shelf Life of Apple-Black Currant Marmalade Candies

Authors: Sandra Muizniece-Brasava, Lija Dukalska, Solvita Kampuse, Irisa Murniece, Martins Sabovics, IlonaDabina-Bicka, Emils Kozlinskis, Svetlana Sarvi

Abstract:

The research object was apple-black currant marmalade candies. Experiments were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® was tested on the quality during the shelf of marmalade. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in room temperature +20.0±1.0 °C. The physiochemical properties – weight losses, moisture content, hardness, aw, pH, colour, changes of atmosphere content (CO2 and O2) in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.

Keywords: Active packaging, marmalade candies, shelf life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
862 Mathematical Modeling of Non-Isothermal Multi-Component Fluid Flow in Pipes Applying to Rapid Gas Decompression in Rich and Base Gases

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of compressible non-isothermal multicomponent fluid mixture flow in a pipe. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales- Eakin (LGE) correlation. Numerical analysis of rapid gas decompression process in rich and base natural gases is made on the basis of the proposed mathematical model. The model is successfully validated on the experimental data [1]. The proposed mathematical model shows a very good agreement with the experimental data [1] in a wide range of pressure values and predicts the decompression in rich and base gas mixtures much better than analytical and mathematical models, which are available from the open source literature.

Keywords: Mathematical model, Multi-Component gas mixture flow, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
861 Corporate Environmentalism: A Case Study in the Czech Republic

Authors: Pavel Adámek

Abstract:

This study examines perception of environmental approach in small and medium-sized enterprises (SMEs) – the process by which firms integrate environmental concern into business. Based on a review of the literature, the paper synthesizes focus on environmental issues with the reflection in a case study in the Czech Republic. Two themes of corporate environmentalism are discussed – corporate environmental orientation and corporate stances toward environmental concerns. It provides theoretical material on greening organizational culture that is helpful in understanding the response of contemporary business to environmental problems. We integrate theoretical predictions with empirical findings confronted with reality. Scales to measure these themes are tested in a survey of managers in 229 Czech firms. We used the process of in-depth questioning. The research question was derived and answered in the context of the corresponding literature and conducted research. A case study showed us that environmental approach is variety different (depending on the size of the firm) in SMEs sector. The results of the empirical mapping demonstrate Czech company’s approach to environment and define the problem areas and pinpoint the main limitation in the expansion of environmental aspects. We contribute to the debate for recognition of the particular role of environmental issues in business reality.

Keywords: Corporate environmentalism, Czech Republic, empirical mapping, environmental performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
860 Effect of Scalping on the Mechanical Behavior of Coarse Soils

Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane

Abstract:

This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.

Keywords: Coarse soils, scalping, substitution, discrete element method, triaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
859 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: Arc spray, coating, composite, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3356
858 Cytotoxic Effects of Engineered Nanoparticles in Human Mesenchymal Stem Cells

Authors: Ali A. Alshatwi, Vaiyapuri S. Periasamy, Jegan Athinarayanan

Abstract:

Engineered nanoparticles’ usage rapidly increased in various applications in the last decade due to their unusual properties. However, there is an ever increasing concern to understand their toxicological effect in human health. Particularly, metal and metal oxide nanoparticles have been used in various sectors including biomedical, food and agriculture. But their impact on human health is yet to be fully understood. In this present investigation, we assessed the toxic effect of engineered nanoparticles (ENPs) including Ag, MgO and Co3O4 nanoparticles (NPs) on human mesenchymal stem cells (hMSC) adopting cell viability and cellular morphological changes as tools The results suggested that silver NPs are more toxic than MgO and Co3O4NPs. The ENPs induced cytotoxicity and nuclear morphological changes in hMSC depending on dose. The cell viability decreases with increase in concentration of ENPs. The cellular morphology studies revealed that ENPs damaged the cells. These preliminary findings have implications for the use of these nanoparticles in food industry with systematic regulations.

Keywords: Cobalt oxide, Human mesenchymal stem cells, MgO, Silver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
857 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator

Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan

Abstract:

Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.

Keywords: Cockcroft-Walton circuit, Harmonics, Ripple factor, HVDC generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
856 Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates

Authors: Amin Kamal Akhnoukh, Lois Zaki Kamel, Magued Mourad Barsoum

Abstract:

The objective of this research is to mitigate and prevent the alkali silica reactivity (ASR) in highway construction projects. ASR is a deleterious reaction initiated when the silica content of the aggregate reacts with alkali hydroxides in cement in the presence of relatively high moisture content. The ASR results in the formation of an expansive white colored gel-like material which forms the destructive tensile stresses inside hardened concrete. In this research, different types of local aggregates available in the State of Arkansas were mixed and mortar bars were poured according to the ASTM specifications. Mortar bars expansion was measured versus time and aggregates with potential ASR problems were detected. Different types of supplementary cementitious materials (SCMs) were used in remixing mortar bars with highly reactive aggregates. Length changes for remixed bars proved that different types of SCMs can be successfully used in reducing the expansive effect of ASR. SCMs percentage by weight is highly dependent on the SCM type. The result of this study will help avoiding future losses due to ASR cracking in construction project and reduce the maintenance, repair, and replacement budgets required for highways network.

Keywords: Alkali Silica Reaction, Aggregates, Moisture, Cracks, Mortar Bar Test supplementary cementitious materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
855 Optimal Estimation of Supporting-Ground Orientation for Multi-Segment Body Based on Otolith-Canal Fusion

Authors: Karim A. Tahboub

Abstract:

This article discusses the problem of estimating the orientation of inclined ground on which a human subject stands based on information provided by the vestibular system consisting of the otolith and semicircular canals. It is assumed that body segments are not necessarily aligned and thus forming an open kinematic chain. The semicircular canals analogues to a technical gyrometer provide a measure of the angular velocity whereas the otolith analogues to a technical accelerometer provide a measure of the translational acceleration. Two solutions are proposed and discussed. The first is based on a stand-alone Kalman filter that optimally fuses the two measurements based on their dynamic characteristics and their noise properties. In this case, no body dynamic model is needed. In the second solution, a central extended disturbance observer that incorporates a body dynamic model (internal model) is employed. The merits of both solutions are discussed and demonstrated by experimental and simulation results.

Keywords: Kalman filter, orientation estimation, otolith-canalfusion, vestibular system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
854 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs

Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia

Abstract:

Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.

Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
853 Characterization, Classification and Agricultural Potentials of Soils on a Toposequence in Southern Guinea Savanna of Nigeria

Authors: B. A. Lawal, A. G. Ojanuga, P. A. Tsado, A. Mohammed

Abstract:

This work assessed some properties of three pedons on a toposequence in Ijah-Gbagyi district in Niger State, Nigeria. The pedons were designated as JG1, JG2 and JG3 representing the upper, middle and lower slopes respectively. The surface soil was characterized by dark yellowish brown (10YR3/4) color at the JG1 and JG2 and very dark grayish brown (10YR3/2) color at JG3. Sand dominated the mineral fraction and its content in the surface horizon decreased down the slope, whereas silt content increased down the slope due to sorting by geological and pedogenic processes. Although organic carbon (OC), total nitrogen (TN) and available phosphorus (P) were rated high, TN and available P decreased down the slope. High cation exchange capacity (CEC) was an indication that the soils have high potential for plant nutrients retention. The pedons were classified as Typic Haplustepts/ Haplic Cambisols (Eutric), Plinthic Petraquepts/ Petric Plinthosols (Abruptic) and Typic Endoaquepts/ Endogleyic Cambisols (Endoclayic).

Keywords: Ecological region, landscape positions, soil characterization, soil classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4303
852 Sex Differences in Thyroid Gland Structure of Rabbits

Authors: Parchami A., Fatahian Dehkordi RF.

Abstract:

The aim of the present investigation was to compare sex differences in thyroid gland structure of rabbits. Five adult male and five adult female (3.1-3.5 kg body weight) New Zealand white rabbits were used in the experiment. Results showed that at light microscopic level, there was no sex difference in microscopic appearance of the thyroid glands. At electron microscopic level, however, the mitochondria and the microvilli of the follicular cells are more numerous and the Golgi complex is also more extensive in male rabbits in comparison to females. Results obtained from micrometric measurements showed that the volume density of the follicles is higher in males than in females, but the differences are not statistically significant .The volume density of epithelium and the height of follicular cells are significantly greater in males than in females and reverse is true about the volume density of interstitium (p<0.05). The volume density of colloid is also greater in females (66±6) than in males (60±7) but the differences are not statistically significant .It was concluded that sex has limited effects on histomorphometric properties of thyroid gland in rabbits.

Keywords: Rabbit, Thyroid Gland, Sex difference, Electron microscope

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
851 FleGSens – Secure Area Monitoring Using Wireless Sensor Networks

Authors: Peter Rothenpieler, Daniela Kruger, Dennis Pfisterer, Stefan Fischer, Denise Dudek, Christian Haas, Martina Zitterbart

Abstract:

In the project FleGSens, a wireless sensor network (WSN) for the surveillance of critical areas and properties is currently developed which incorporates mechanisms to ensure information security. The intended prototype consists of 200 sensor nodes for monitoring a 500m long land strip. The system is focused on ensuring integrity and authenticity of generated alarms and availability in the presence of an attacker who may even compromise a limited number of sensor nodes. In this paper, two of the main protocols developed in the project are presented, a tracking protocol to provide secure detection of trespasses within the monitored area and a protocol for secure detection of node failures. Simulation results of networks containing 200 and 2000 nodes as well as the results of the first prototype comprising a network of 16 nodes are presented. The focus of the simulations and prototype are functional testing of the protocols and particularly demonstrating the impact and cost of several attacks.

Keywords: Wireless Sensor Network, Security, Trespass Detection, Testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
850 The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel

Authors: Suleiman M. Elhamali, K. M. Etmimi, A. Usha

Abstract:

The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6μm and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate.

Keywords: Carbon steel, laser surface melting, microstructure, microhardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
849 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: Corrosion, duty cycle, pulsed current, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
848 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
847 Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces

Authors: Roozbeh Keshmiri, Alireza Mohamad Shahri

Abstract:

Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.

Keywords: Fuzzy Logic Control, ABS, Anti lock BrakingSystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3730