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Abstract—In the project FleGSens, a wireless sensor network
(WSN) for the surveillance of critical areas and properties is currently
developed which incorporates mechanisms to ensure information
security. The intended prototype consists of 200 sensor nodes for
monitoring a 500m long land strip. The system is focused on ensuring
integrity and authenticity of generated alarms and availability in the
presence of an attacker who may even compromise a limited number
of sensor nodes. In this paper, two of the main protocols developed
in the project are presented, a tracking protocol to provide secure
detection of trespasses within the monitored area and a protocol
for secure detection of node failures. Simulation results of networks
containing 200 and 2000 nodes as well as the results of the first
prototype comprising a network of 16 nodes are presented. The focus
of the simulations and prototype are functional testing of the protocols
and particularly demonstrating the impact and cost of several attacks.

Keywords—Wireless Sensor Network, Security, Trespass Detec-
tion, Testbed.

I. INTRODUCTION

O
VER the past years, wireless sensor networks (WSNs)

and their applicability for a vast number of scenarios

have been the focus of research worldwide. Although the

need for secure communication protocols in WSNs is widely

accepted, having put forth many proposals to that end, these

protocols have rarely been applied in a real-world environ-

ment.

One of the most interesting application scenarios for WSNs

is the domain of area surveillance systems. The project

FleGSens realises such a surveillance system for critical areas

like e.g. borders or private properties. Its main objectives are

the secure detection and signalling of trespassers within a

predefined area in the presence of both malicious and non-

malicious interference. Due to the heavy restrictions in terms

of power supply, memory capacity and processing power that

is typical for WSNs, it is mandatory to incorporate security

considerations into every step of protocol design. As sensor

networks are disproportionally more vulnerable to attacks than

classical networks, the presented protocols are designed with

special regard to the presence of a strong attacker that may

even compromise a certain number of nodes in the WSN. The

assumed attacker is a classical Dolev-Yao attacker [1] with

some extensions to pay up to the specific possibilities that

come with the use of wireless sensor nodes, notably physical

access to the nodes. The applied security mechanisms focus on

providing authenticity and integrity of the information reported

by the network; to this end, cryptographic hash functions and

message authentication codes (MACs) are used. It is not in-

tended to guarantee confidentiality, seeing as no information is

processed that needs particular protection through encryption.

This paper presents a basic system for area surveillance

using only simple passive infrared sensors (PIR sensors) for

trespass detection. The system consists of a trespass detection

protocol that detects trespassers and signals the detection

towards a dedicated gateway, and a node failure detection

protocol which informs the gateway if a node fails to respond

for a specified period of time. The authors present evaluation

results of this system both in a simulated environment and in

a first prototype.

The remainder of this paper is organised as follows: In

section II an overview is given over previous works that have

been proposed in the areas of surveillance and object tracking;

section III discusses the security analysis, resulting in an

application specific attacker model upon which the protocol

design and implementation is based. In section IV the design

of the trespass and node failure detection is presented in detail.

Sections V and VI show the results of the simulation and real-

world deployment of the developed system respectively. The

paper is concluded in section VII with an outlook on the next

steps.

II. RELATED WORK

Surveillance and tracking applications for WSNs have been

the subject of both academic and military research in the past.
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An early work has been contributed by Yang et al. in 2003 [2].

The authors focus on algorithms for detecting and tracking an

object by evaluation of basic information transmitted to a base

station by a sensor network. The nodes broadcast information

on whether an object moves towards them or away from them,

as well as an estimation of the object’s proximity. To estimate

the object position and movement direction the authors use

particle filters; however, the question of how to communicate

the information towards the base station is left open, as well as

any security aspects. In the field of military research, extensive

analyses have been presented by Arora et al. [3]. The authors

focus on the classification of objects, introducing three differ-

ent categories thereof. They use multiple and complex sensors

such as radar, magnetic or even optical sensors. As the sensors

produce a large amount of data, the authors propose algorithms

to track an identified object efficiently; however, the approach

to the underlying communication remains a minor point in [3],

and therefore aspects of information security are not discussed

either. Xu et al. [4] propose a cluster-based communication

protocol to convey information about targets identified by

object tracking sensor networks. Both base station and sensor

nodes estimate the target’s position; the sensor nodes exchange

the relevant information inside the cluster until sensory input

and estimation results differ. Only in that case the sensor nodes

notify the base station using multihop communication. Thus,

communication overhead is reduced to a level suitable for

sensor networks. No mention is made of security aspects or

malicious attackers, so that questions of information security

still remain open. Furthermore, the authors assume more

complex sensors to produce the data needed for the estimation

than are given in the FleGSens context. Another proposal to

tackle the problem of efficient communication has been made

by Yang et al. [5]. Similar to [4], the authors use cluster-based

communication to reduce the overhead introduced by multihop

communication and a prediction scheme to estimate an object’s

position. Clusterheads can wake up the nodes of their clusters

when the object moves into their sensor range; this enables

the authors to put most of the nodes into an energy-saving

sleep mode most of the time. The authors, however, do not

include the presence of an attacker in their reasoning, leaving

security related questions open; also, cluster management is a

non-trivial problem causing computational and communication

overhead.

In summary, to the best of the authors’ knowledge, the

works proposed in the fields of object tracking and surveillance

do not provide solutions for security problems induced by a

malicious attacker in the sensor network. Furthermore, often

communication aspects are only touched upon, leaving open

the questions when and how to communicate information, as

well as the arising issues of scaleability and robustness.

This paper focuses on communication and security regard-

ing the detection of trespasses across an area monitored by

a sensor network using only minimal sensor material. The

paper presents a localised approach that does not need cluster

communication, thus having to cope with much less overhead

in that department, and evaluate the system by means of

simulation and prototype testing.

III. SECURITY ANALYSIS

This section describes the security analysis that was per-

formed before designing and implementing the protocols pre-

sented herein. The design of any secure architecture requires

exact knowledge of what the architecture in question has to

be able to defend against. Often, this is done intuitively or

implicitly; however, this approach is error-prone and com-

plicates debugging and maintenance work unnecessarily. Due

to the need to include security considerations in every step

of the development process, and to enable a validation of

security-related properties of the protocols, both general and

application-specific goals of an attacker are captured in an

attacker model.

A. Attacker Model

An attacker model defines the goals as well as the means

an attacker has at their disposal to achieve those goals. It is

therefore necessary to analyse both in detail since the design

of the whole security system is based upon the assumptions

made about the attacker that is present in the network.

The word attacker in the context of network security often

implicitly refers to a specific attacker – the so-called Dolev-Yao

[1] or Man-in-the-Middle attacker. This attacker is capable of

listening to any and all messages communicated over the net-

work medium. They also may insert messages into the network

or manipulate any message sent by a legitimate participant

of the network. The Dolev-Yao attacker is a globally acting,

collaborating attacker, which means that they may act at any

location in the network and that all malicious instances – i.e.

the attacker’s nodes – share their information and knowledge

about the network instantly. To this end, they may or may not

use an out-of-band channel: the essential point is that they

do not have to use the attacked network for their own com-

munication. The Dolev-Yao attacker is limited in one aspect,

though, as they are not able to guess cryptographic material –

i.e. keys – by brute force in a reasonable time. Consequently,

they can only ever use the keys they already know. Specifically,

in the context of data integrity and authenticity as mentioned

above in section I, this means the attacker is not capable of

masquerading as a node whose key material they do not know.

Sensor networks, however, offer a potential attacker feasible

ways to further influence the network’s function. Typically

– and in the case of FleGSens intrinsically – sensor nodes

are deployed in non-protected environments. This means that

anyone can relatively easily access the nodes physically. The

Dolev-Yao attacker model is insufficient to pay up to this

potential, as physical access is not considered in this model.

Therefore, in WSNs, the Dolev-Yao attacker is often extended

to include the WSN-specific avenues: the attacker may destroy

nodes they have physical access to; they may read the memory

of those nodes and thus gain access to the cryptographic

secrets stored there; they may even reprogram the nodes.

Nodes thus reprogrammed are called compromised nodes.

It is important to note that node compromise is virtually

impossible to detect; compromised nodes may be indefinitely

well-behaved until they take malicious action.
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The FleGSens WSN basically consists of two different kinds

of nodes: there are one or several gateways in the network

as well as ordinary sensor nodes. The node types differ only

by the fact that gateways possess a secure and permanent

connection to a base station as well as a permanent power

supply. Gateways make up 1% of the overall node population.

Protocols in the context of the FleGSens scenario must be

able to deal with up to 5% of the nodes to be compromised.

Compromised nodes are assumed to be approximately uni-

formly distributed in the network, the only exception being

that gateways and the base station to which they are connected

cannot be compromised. Furthermore, it is assumed that up to

10% of the nodes can be permanently down e.g. due to power

exhaustion or damage. Table I summarises the conditions

under which the FleGSens system must be able to function.

Parameter Value

Compromised nodes 5%
Permanently failed nodes 10%
Gateways 1%

TABLE I
BOUNDARY CONDITIONS OF THE FLEGSENS SCENARIO

B. Application-specific Objectives

With the boundary conditions for both the FleGSens system

and the attacker strength thus defined, the following applica-

tion specific goals of the attacker can be identified:

a) Preventing the network from reporting trespassers:

If a trespasser crosses the area monitored by the WSN, the

network has to communicate and process the sensor events

triggered by the trespasser and raise an alarm when indicated.

The attacker therefore might want to hinder the communica-

tion or processing of sensor events. Given the attacker has

compromised a sufficient amount of nodes in the network,

they can achieve this by not relaying messages concerning the

detection of the trespasser at critical points. This attack will

be referred to as Silence Attack in the following. Redundant

sensor coverage of the area and redundant routing paths

through the network complicate this attack. Another venue

the attacker might choose consists in destroying the nodes on

the trespasser’s path. This also motivates the deployment of a

node failure monitoring protocol to ensure that missing nodes

are reported to the gateway.

b) Delaying the report of trespassers: Instead of alarm

prevention, the attacker may want to delay the report of

trespassers, enabling them to cross the monitored area suf-

ficiently long before the network maintainer arrives on site.

This could be achieved by a typical Jamming Attack blocking

the frequency used for communication and therefore forcing

the network to establish alternative paths to a gateway. The

use of redundant routing paths and several gateways reduces

the risk of falling victim to this kind of attack.

c) Manipulating the information reported about a tres-

passer: If an alarm is raised, the network should simultane-

ously provide information as to the last known locations of the

trespasser, e.g. as identified by the network addresses of nodes

that register the trespasser via their sensors. If the attacker

is able to manipulate the information sent in the according

messages, it will be difficult up to impossible to locate the

trespasser in a reasonable amount of time, resulting in their

unhindered passage of the monitored area. If communication

is authentic and information integrity is granted e.g. by using

MACs at application layer, an outside attacker cannot manip-

ulate the messages without being detected – inside attackers,

e.g. in the form of compromised nodes may still launch the

Manipulation Attack described here, as far as they are privy

to the cryptographic keys needed.

d) Covering up node failures: If an attacker can cover

up node failures a trespasser could choose their path across

the monitored area according to where the failed nodes are

and thus be able to cross over undetected. Covering up node

failures could be achieved by replaying old messages of the

failed nodes, thus suggesting that the nodes in question are

still up and running. It is the objective of a secure node failure

detection protocol to protect against this kind of Replay Attack.

IV. PROTOCOL DESIGN

This section of the paper describes in depth the design of the

protocols running within the basic FleGSens system. As men-

tioned in section I, the basic system consists of two protocols

at application layer: one for trespass detection and node failure

detection respectively. First, the trespass detection protocol

as the core of the application is introduced in Section IV-A.

Where applicable according to the attacker objectives specified

in Section III-B, the need for security mechanisms is pointed

out. In Section IV-B the secure node failure detection protocol

is described.

Beneath the application layer, the FleGSens protocol archi-

tecture uses a hop based routing network layer and an IEEE

802.15.4 link layer. The network itself follows a grid topology

as illustrated by figure 1, where a and b denote length and

width of the monitored area, n identifies the number of nodes

and F illustrates the sensor range.

a

b

n

F

Fig. 1. Grid topology of the FleGSens scenario

A. Trespass Detection Protocol

A trespasser that moves within the range of a PIR sensor

will create a so-called PIR event – i.e. an interrupt on the node

whose PIR sensor has detected the movement. A PIR event

may be characterised by the timestamp of its registration and

the location or ID of the node that registers it. Note that no

complex sensor information is needed to identify a trespasser.
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The PIR sensors only provide binary information: movement

or no movement.

The most intuitive and easiest way to communicate the

detection of a trespasser towards one or several data gate-

ways is to flood an Event message into the network with

every registered PIR sensor event. An Event message contains

the timestamp of the PIR interrupt, the position where the

event has been detected and a message authentication code –

calculated using a predistributed key shared between sender

and data gateway – that ensures authenticity of the sender

and information integrity during transfer. Due to the flooding

mechanism at network layer, the routing is as redundant as

possible, thus maximising the probability of all messages

reaching at least one gateway. Having reached the gateway, the

messages may be processed by the gateway to reconstruct the

trespasser’s path if possible. Although this intuitive protocol

seems very simplistic, it does perform well in terms of

computational overhead on the sensor nodes and key material

needed to authenticate the messages. Since every message

is addressed to the data gateways, nodes need only store as

many keys as there are data gateways in the network. If the

assumption holds that data gateways are uncompromiseable,

there even is no need for more than one key per node that

is meaningful to all gateways. The keys must be unique, thus

identifying a node and serving for authentication purposes.

Forged or manipulated events can be detected on the gateway

when the verification of MACs fails.

The obvious downfall of this protocol is its high commu-

nication overhead – each PIR event will be flooded into the

network, creating an enormous amount of traffic. The protocol

does not discern between trespassers that characteristically

create a chain of PIR events following their chosen path

through the area on one hand, and sporadic PIR events that

may be triggered by animals or even wind on the other. Seeing

as the gateway can still filter those sporadic events due to its

knowledge of the network’s topology, this does not impede

the detection of trespassers; however, the communication load

puts a heavy strain on the nodes’ energy consumption.

The basic idea of the trespass detection protocol used

in the FleGSens system is to collect PIR event messages

locally before flooding an aggregate of aggregate size events

into the network. To this end, each node, if it registers a

PIR event, broadcasts a so-called AllEvents message to its

immediate neighbours. This message contains all – yet unsent

– events the sender node knows up to then, represented by

their respective timestamps and positions. The receiving nodes

keep the new event(s) in their memory. An event is deleted

from the memory if the node does not register or receive any

new events within the next max event lifetime seconds,

where max event lifetime is a configurable parameter of

the trespass detection protocol. This maximum lifetime of an

event is necessary as otherwise the protocol would collect

sporadic PIR events and interpret them as trespass.

As soon as a node has thus collected aggregate size

events, it floods them cumulatedly into the network. This

is referred to as flooding aggregated events. The result is a

protocol behaviour equivalent to flooding the network under

a certain condition – in this case the condition that there

have been at least aggregate size PIR events in the local

region of the flooding node. Figure 2 shows the protocol

states of the gateway; basically the gateway simply waits

for AllEvents messages. The protocol states of the sensor

nodes are illustrated by figure 3. In the StandBy state, the

nodes wait for AllEvents messages broadcast to them by their

neighbours. Upon receipt of an AllEvents message, the nodes

check how many events they have stored. If the sending

threshold of aggregate size events is reached, they flood the

events known to them in an allEvents message and return into

the default – i.e. StandBy state.

INIT

registerForInvasionDetections()

StandBy
R: ALLEVENTS_MSG /
saveEvent(ALLEVENTS_MSG) &&
tryToDetectInvasion()

invasionDetected == true /
alarm()

--- R: Receive --- T: Transmit --- Condition / Action ---

Fig. 2. States of the gateway

INIT

StandBy

gotPIREvent == true /
getTime() &
saveEvent() &
checkCondition()

registerForPIREvents()

Forward
Condition

Check

R: ALLEVENTS_MSG /

saveEvent(ALLEVENT_MSG) & 

checkCondition()

conditionSatisfied == false &&

gotPIREvent == false /

conditionSatisfied == true &&

iAmSink == false /
T: bcastAllEvents(ALLEVENTS_MSG)

conditionSatisfied == false &&

gotPIREvent == true /

T: bcast(ALLEVENT_MSG)conditionSatisfied == true &&

iAmSink == true /
T: toBasestation(ALLEVENTS_MSG) &
T: bcastAllEvents(ALLEVENTS_MSG)

--- R: Receive --- T: Transmit --- Condition / Action ---

Fig. 3. States of the sensor nodes

The advantage of this protocol compared to the intu-

itive approach is twofold: First, the communication overhead

caused by flooding the network is decimated by a factor of

aggregate size on average. Second, due to the characteristic

trail of PIR events a trespasser causes locally, the protocol

allows to detect trespassers while at the same time being

able to filter sporadic events using the maximum lifetime

max event lifetime of an event. Note that – compared to

the intuitive protocol – it is still not necessary to use more

cryptographic material than one pairwise key for each node,

i.e. the key they share with the gateway. Using MACs, the
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gateway is able to detect forged or manipulated events, so

that, on the whole, the attacker’s influence is limited by the

number and position of nodes they have compromised.

B. Node Failure Detection Protocol

The coverage of the trespass detection protocol is highly

dependant on the number of nodes that are monitoring the

desired area. As a node may fail permanently due to damage or

battery depletion, thus decreasing the coverage of the tresspass

detection protocol, the need for a node failure detection pro-

tocol arises. A secure node failure detection protocol enables

the network maintainer to repair or replace any failed node.

The basic idea of the FleGSens node failure detection consists

in the nodes broadcasting heartbeats at certain points in time

to indicate they are still up and running. Since a node is not

able to detect its own failure, other (i.e. surrounding) nodes

must assume this task. Hence, nodes must keep track of their

neighbours’ messages and report a failure if no messages were

received from a neighbour for a certain period of time. As

both heartbeats and messages sent to report a node failure

require a share of the medium’s available bandwidth, a number

of measures have to be taken to avoid collisions. Primarily,

collisions occur if a large number of nodes try to send a

message at approximately the same time. This, for instance, is

the case if all the failed node’s neighbours report the failure,

since in a multihop scenario that uses flooding on the network

layer, each failure report must be forwarded by each node of

the network. Thus, it is necessary to reduce the number of

failure reports in very dense networks; it would be sufficient

if at least one node reports the failure. However, since this

node may be corrupted, it is important to select a subset of

neighbours for each node’s livelihood surveillance. In addition

to the number of messages sent per time interval, the length of

messages contributes to the risk of collisions. Any messages

sent need an integrity and authentication mechanism to prevent

a potential attacker from spoofing or replaying messages to

conceal a node failure. Since the nodes in a WSN suffer

from resource constraints which prohibit the use of public key

cryptography and broadcast authentication mechanisms such

as proposed by [6] do not perform well for many senders,

authentication costs scale in O(n) where n is the number

of recipients of a message. This is due to the fact that for

each intended recipient separate message authentication codes

must be included in the message, resulting in longer messages.

This is particularly relevant for heartbeats sent by all nodes

at regular intervals; also, keeping track of node states for all

neighbours in a dense network puts a strain on the nodes’

available memory. Both authentication costs and statefulness

of the protocol thus reinforce the need to select a subset of

neighbours for the task of monitoring a node.

Nodes have to keep track of the keys to each node they

monitor as well as to each node that monitors them. Therefore,

it is reasonable to use bidirectional relations instead of unidi-

rectional. Since the security mechanisms which are described

in the next section rely on symmetric key cryptography, the

keys can be used for bidirectional communication anyway. In

FleGSens, the HARPS key distribution protocol [7] is used

to generate symmetric pair wise keys between nodes in the

network. In the following, a protocol for the secure detection

of node failures is presented in which a subset of neighbours

monitor the activity of one node which in turn monitors exactly

that subset, resulting in bidirectional relations called buddy

relations. The configurable parameters min buddy count and

max buddy count specify a lower and upper bound for the

number of buddies respectively.

Nodes periodically send heartbeat messages and report the

failure of a buddy given the absence of a certain number

of these messages. Instead of using specific heartbeat mes-

sages, it would be possible to utilise regular network traffic

for this task, but the use of heartbeat messages has two

advantages: First, heartbeat messages contain data to provide

authenticity, integrity and protection against replay-attacks.

Such data would otherwise have to be included in all regular

traffic, leading to additional overhead in networks with more

regular traffic than heartbeat messages. Second, heartbeat

messages have to be sent periodically to make it possible

to detect their absence. If regular network traffic lacks any

peridodic quality, additional messages and application logic

is be needed to avoid false positive failure detections. The

proposed node failure detection protocol uses authentication

mechanisms that rely on symmetric key cryptography like

those in AES-CCM* provided by devices that implement the

IEEE 802.15.4 standard [8]. The protocol is divided into three

subsequent phases as shown in Fig. 4:

Fig. 4. Protocol phases of the node failure detection

The first phase is the neighbour detection phase, in which

all nodes in the network periodically broadcast discovery

messages containing their ID. A node that receives a discovery

message inserts the contained ID into its neighbour list and

keeps track of the received signal strength. Transitions to

the following phases are triggered by the receipt of control

messages sent by the gateway to all nodes in the network.

Control messages are not part of the node failure detection

protocol itself but belong to the main application.

The next phase is the buddy election phase during which

the buddy relations mentioned above are formed. All messages

used in this phase contain a timestamp and a message authenti-
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cation code. The MAC is calculated over the payload including

the timestamp, using the symmetric key shared between the

sender and the receiver. This enables the receiver to determine

the age, integrity and authenticity of the message.

At the beginning of the buddy election phase, each node

first sorts its neighbour list by signal strength and then starts

sending buddy request messages to the neighbour with the

best signal strength. A buddy request message is resent up to

3 times until either an ACK or NACK is received as described

below. Neighbours with better signal strength are favoured as

buddies, seeing as it is reasonable to assume they provide

a higher packet arrival ratio during the subsequent operation

phase and thus produce fewer false positive failure detections.

During the buddy election phase, nodes iteratively send

buddy request messages to the next node in their sorted

neighbour list. The corresponding neighbour either accepts or

rejects the buddy relation, depending on its current number of

buddies and the result of the message authenticity check. If the

neighbour has less than max buddy count buddies and the

authenticity can be verified, a buddy ACK is sent, otherwise

a buddy NACK is sent. Each node then continues sending

buddy request messages to the next node in its neighbour list

until it has at least min buddy count buddies or there are no

more nodes left in the list. At the end of this phase, node Ni

has buddies(Ni) buddies which are stored in its buddy list,

containing the ID and a heartbeat counter for each buddy;

the heartbeat counter is used to keep track of the number of

heartbeat messages that were consecutively missed.

The last phase is the operation phase in which all nodes per-

form the following steps every heartbeat interval seconds:

First, they broadcast a heartbeat message, then they check

the heartbeat counter of each buddy and afterwards increase

it by one. A heartbeat message sent by Node Ni contains a

timestamp followed by buddies(Ni) MACs. The kth MAC is

calculated over the payload including the timestamp, using the

symmetric key between the sender and its kth buddy. This way

a node has to broadcast only one heartbeat message, which

then enables all its buddies to determine the age, integrity and

authenticity of this heartbeat message. Once a node receives

a heartbeat message from one of its buddies, it checks the

message integrity.

If the message’s authenticity and integrity can be ver-

ified and the timestamp of the message is younger than

heartbeattimeout seconds, the receiving node resets the ac-

cording heartbeat counter. The timestamp check against

heartbeattimeout is used to prevent replay attacks on heart-

beat messages. Since the heartbeat counter of every node is

increased by one every heartbeat interval seconds and reset

to zero every time a authentic heartbeat message is received,

the heartbeat counter equals the number of consecutively

missed heartbeat messages from the corresponding buddy.

This counter is therefore used to detect node failure by

comparing the counter to a fix threshold thb. The threshold

thb together with the value of heartbeat interval therefore

determines the timespan needed to detect node failure, given

tdetect = heartbeat interval ∗ (thb + 1). Please note that

(thb + 1) is used for the detection duration since a node

failure message is created, after more than (thb) heartbeats are

missing. Both the heartbeat interval and the parameter thb

should be selected according to the needs of the application.

The lower thb is, the higher the amount of false positives due to

regular message loss, the higher thb, the higher the time needed

for detecting the node failure. After the heartbeat counter has

reached the threshold thb, an node failure message is send

to the gateway which contains the IDs of the reporting and

failed node, the timestamp of the alert and a MAC. The MAC

is calculated the same way as described above, using the key

between the reporting node and the gateway.

To lower the impact of heartbeat messages on the re-

maining network traffic in terms of collisions and bandwidth

utilisation which may lead to false positive detections, the

process of sending heartbeat messages and checking the

heartbeat counter of buddy nodes in FleGSens is organ-

ised as follows: In the FleGSens application, the duty cycle

protocol enables all nodes to send and receive messages

every duty cycle interval but requires them to send a heart-

beat message only every heartbeat interval. Given e.g.

duty cycle interval = 1 sec and heartbeat interval =
2 sec, nodes split into two groups based upon their ID. Nodes

with an even ID perform the steps in the even duty cycle

intervals and nodes with an odd ID perform the steps in the

odd intervals.

C. Further Protocols

To ensure the secure detection of trespassers reliably over a

long period of time, further protocols are required which are

described briefly in this section.

First, it must be ensured that all messages arrive at their

destination, especially alarm messages intended for a gateway

must reach it over at least one path. This can only be achieved

if a path between any sending node and one or more of the

gateways exists. Hence, a protocol must detect if the network

is partitioned, the so-called partition detection protocol. It op-

erates in a way that gateways periodically exchange messages

and check if and via which nodes the message from the other

gateway arrived.

Second, realising a network lifetime larger than a few days

despite the limited energy of sensor nodes requires saving

energy. As radio and processor consume most of the energy, it

is sufficient to turn off these components while the PIR sensor

remains active and wakes up the processor by an interrupt in

case it detects a moving object. Periodically, the radio is turned

on for message exchange. A duty cycling protocol organises

the duty cycles of all nodes in a way that neighbours can

always communicate and the end-to-end delay is minimised.

With coordinated duty cycles, the need for synchronised

clocks arises. The time synchronisation process is initiated by

the gateway, which first synchronises all its neighbours. Syn-

chronised nodes again synchronise their neighbours until the

whole network is synchronised. The synchronisation protocol

includes mechanisms based upon the TESLA protocol [6] to

ensure message authenticity, as well as methods for outlier

detection to increase overall synchronisation accuracy.

Since the events generated by the trespass detection protocol

need location information which then can be displayed at the
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gateway, a localisation protocol is needed. To this end, the

SHOLOC protocol described in [9] was chosen. It features hop

based authentication using the TESLA protocol [6] similar to

the aforementioned time synchronisation protocol.

V. SIMULATION

A. Simulation Framework

To simulate the implemented protocols, the network simu-

lator Shawn [10] was used. Shawn has built-in support for the

hardware platform that is used in the real-world experiments.

This makes application development more efficient, since

the protocols and applications can be written once and then

compiled for the simulator and the hardware using the same

code. The simulator further includes a CSMA Transmission

model that is capable of simulating the IEEE 802.15.4 [8]

radio interface used by the hardware platform. The CSMA

model was parameterised to further fit the characteristics of

the hardware, the communication range was set to 30m and

link quality was modelled based upon extensive measurements.

B. Scenario

To analyse the functionality and scalability of the proposed

protocols, they were tested in two scenarios of different size

as shown in Table II. While scenario A contains 200 nodes,

scenario B comprises 2000 nodes and is used to show the

scalability of the protocols. In each scenario, the nodes were

aligned in a grid with fixed distances between rows and

columns; the simulations were repeated using 20 different

randomly generated seeds. To test the performance of the

trespass detection protocol, the passive infrared sensor was

modelled to generate alarms caused by virtual trespassers.

The virtual trespasser moves along configurable waypoints and

generates events at a node in the network at the time they enter

the area monitored by its PIR sensor.

Scenario A Scenario B Prototype

Number of nodes 200 2000 16
Rows * Columns 4x50 8x250 4x4
Row / Column distance 7.5m/7.5m 7.5m/7.5m 4m/5m
Diameter 13 hops 65 hops 1 hop
Runtime 2 hours 2 hours 1 hour

TABLE II
SELECTED SCENARIO SIZES

As introduced in section IV-A, the trespass detection proto-

col uses two configurable parameters: the maximum lifetime

max event lifetime of an event and the flooding condition

aggregate size that determines the number of events a node

has to collect before flooding an AllEvents message into

the network. For Scenario A, max event lifetime was set

to 11 seconds, scenario B uses a max event lifetime of

30 seconds whereas for the prototoype, max event lifetime

was set to 10 seconds. Bot the small scenario A and the proto-

type aggregate 2 events locally before flooding the aggregate

into the network, whereas Scenario B uses the aggregate size

parameter set to 3 events.

As for the node failure detection protocol, all nodes in

the network try to form buddy relations to a total number

of 3 buddies, and, in the operation phase, periodically send

heartbeats every 2 seconds, reporting the failure of one of

their buddies if more than thb = 9 heartbeats appear to

be missing. At a fixed time, 10% of the nodes are selected

randomly and switched off simultaneously to evaluate the time

needed for failure detection. All reported failures are recorded

and compared to the list of nodes that have actually been

deactivated to evaluate the number of false positive alarms.

Table III shows how the parameters were chosen for the

different simulation scenarios. The results of all simulative

tests are described in the following section.

Scenario A Scenario B Prototype

max event lifetime 11 30 10
aggregate size 2 3 2
min buddy count 3 3 3
max buddy count 7 7 7
heartbeat interval 2 2 2
thb 9 9 9
Number of failed nodes 20 200 2

TABLE III
PROTOCOL PARAMETERS

C. Results

To evaluate the trespass detection protocol, a total number

of 50 different paths representing a trespasser through the

monitored area were defined. Three basic categories of paths

were identified: Straight paths cross the area the shortest way

possible from one side to the other. Diagonal paths still follow

a straight line, though not the shortest there is, from one side

of the area to the other. Complex paths may be completely

random, even leaving the area on the same side as entering

it. In each simulation run, a trespass every 100 seconds was

simulated to avoid concurrency effects during the detection.

The protocol was evaluated under the following aspects:

• Reliability of detection: Number of correctly detected

trespasses

• Communication load: Number of messages needed per

PIR event

• Robustness against false events: Number of false alarms

• Robustness against attackers: Number of correctly de-

tected trespasses in the presence of an attacker

The attacker is modeled to launch several attacks according

to their objective as described in section III. The first attack

consists in letting compromised nodes drop any and all All-

Events messages they receive. Furthermore, if a compromised

node detects a PIR event, it will not broadcast the according

AllEvents message to its neighbours, thus trying to prevent the

network from detecting a trespass successfully. This attack is

called silence attack.

The second attack considers the goals of delaying and and

adulterating tresspass detections respectively. To this end, the

attacker manipulates timestamps and location information in

AllEvents messages sent by compromised nodes. Note that –

as compromised nodes know the cryptographic material – the

compromised nodes recalculate the MACs accordingly. Thus,

manipulations cannot be detected by MAC verification failure.

The attack is referred to as an manipulation attack.
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The third attack modeled in the simulation environment

aims to destroy AllEvents messages. The attacker randomly

manipulates the information contained in every AllEvents mes-

sage their compromised nodes send or forward. The attacker

does not recompute the MACs; thus, they are able to affect a

larger number of messages than using the manipulation attack.

This attack is called destruction attack.

Table IV shows the protocol’s performance in terms of

detection reliability; the figures indicated by the ± symbol

identify the 95% confidence interval. In each run, 50 trespasses

were simulated; all trespasses were correctly detected.

Trespasses Correctly detected trespasses Number of alarms
50 50 60.5 ± 0,266

TABLE IV
TRESPASS DETECTION

Note that on average, there is more than one alarm raised

by the base station per trespass. This is due to the fact

that the base station was configured to detect a valid path

through the area if time and location of three PIR events

can be reasonably connected. Thus, especially considering

the categories of diagonal and complex paths where paths

are longer than in the straight path category, there is the

possibility of detecting several sections of one trespass. The

more connectible PIR events are assumed, the less redundancy

is achieved. However, this also increases the risk to falsely not

detect a trespass due to lost AllEvents messages.

Table V shows how many PIR events were registered on

the nodes per simulation run; the figures indicated by the

± symbol identify the 95% confidence interval. Out of 2660

PIR events, on average 26.85 events were lost due to message

loss during the transfer of the according Allevents messages.

Message losses were caused by collisions on the link layer.

PIR events Lost events

2660 26,85 ± 0,259

Delivered PIR events Delay [s]

2633 4.85 ± 0.141

TABLE V
EVENTS DURING TRESPASS DETECTION

Furthermore, table V shows that the average time delay

between the registration of a PIR event as a hardware interrupt

and the receipt of an AllEvents message containing the event

at the gateway amounted to 4.85 seconds. All events not lost

during transfer were reported to the gateway in less than five

seconds.

Table VI shows the simulation result in terms of commu-

nication load; figures indicated by the ± symbol identify the

95% confidence interval. The table shows the overall number

of messages transmitted in the network per PIR event. As the

simple protocol floods all event messages into the network

directly, the figure represents exactly all events being sent by

each node once.

As can be read from the table, communication load is

reduced by factor two using the localised protocol as described

in section IV. This is due to the fact that each node, before

Protocol PIR
events

Flooded msgs. msgs./PIR
event

Simple 266 53200 200

Localised 266 25019.7 ± 49.573 95.05

TABLE VI
COMMUNICATION LOAD DURING TRESPASS DETECTION

flooding the network, has to collect aggregate size = 2
events locally.

The simulation results in terms of robustness to sporadic

events are shown in Fig. 5. The false event rate was varied

between 0 and 8 events per two hours runtime. It is assumed

that the statistical probability of false events follows a uniform

distribution and is the same on all nodes in the network.
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Correctly detected trespasses

Alarms 60,5 59,6 59,1 59,5 61,5 79,35 164,35

Events lost 26,85 29,25 31,25 31,5 31,65 33,95 34,75

False events 0 14,5 41,3 71,15 117,1 381,6 1049,9

Correctly detected

trespasses

50 49,05 48,45 48,2 46,5 44,3 40,3

0 0,5 1 1,5 2 4 8

Fig. 5. Influence of false events on trespass detection

The figure shows that up to about 2 false events per

two hours and node the influence on the trespass detection

protocol is relatively low. The number of alarms falls with

rising false event rate. This is due to the fact that the more

events are produced, the more events are lost – as shown by

Fig. 5. Especially considering the category of straight paths,

this affects detection, since, in that case, only few events

are even registered. Consequently, the number of correctly

detected trespasses decreases as the false event rate rises. If

the false event rate is higher than 2 false events per two hours,

the number of alarms rises dramatically; however, numerous

outdoor measurements were performed using the hardware

confirmed a maximum false event rate of 2 false events per

two hours, putting the large figures into perspective again.

Table VII summarises the effects of an attacker as specified

above with 5% compromised nodes; the figures indicated by

the ± symbol identify the 95% confidence interval. As above,

the nodes aggregate two events before broadcasting; the base

station was configured to detect a trespass if it is able to

connect three individual events according to their timestamp

and locality information.

While the manipulation attack – wherein the attacker only

changes messages sent by compromised nodes – is virtually

effectless, the table shows different results with regard to

the silence and destruction attacks. The attacker influences
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Attack Alarms PIR events lost Detected tres-
passes

Silence 51,4 ± 1,019 42,6 ± 2,129 43,4 ± 1,093
Manipulation 60,55 ± 0,233 26,85 ± 0,313 50 ± 0
Destruction 53,5 ± 0,713 34,55 ± 1,267 45,9 ± 0,696

TABLE VII
TRESPASS DETECTION IN THE PRESENCE OF AN ATTACKER

relatively many messages, thus increasing their chance to

impede trespass detection. On average, 6.6 and 4.1 trespasses

could not be correctly detected respectively. In the 4x25 node

scenario, this is to be expected: if three events must be

connected to form a valid path and the shortest path across

the area contains only four events, the loss of a single event

is already critical for the detection. Since AllEvents messages

always contain two events and both are lost or destroyed by the

attacker, the effect is noticeable especially for straight paths.

The simulations were repeated with a base station configured

to connect two instead of three events to an alarm and could

thereby validate this reasoning: all trespasses were correctly

detected using the new configuration.

The results of the node failure detection protocol tests are

summarised in Table VIII. Since scenario B is formed using 8

instead of 4 rows like scenario A, this leads to nodes having

24 neighbours in scenario A and 34 neighbours in scenario B.

The desired number of 3 buddies was achieved by almost all

nodes in both scenarios. One significant difference between

both scenarios is the number of reported false positive node

failures. The simulation of scenario A and B incorporates the

duty cycle management and additional protocols mentioned

in Section IV-C which are running at the same time. This

has impact on the packet loss and thus the number of false

positives. The average number of false positives generated in

scenario A is 0,1 and 16,8 in the case of scenario B. The

higher number of false positives in the scenario comprising

2000 nodes is a result of the higher number of neighbours.

This leads to the increase of concurrent network traffic and the

hidden terminal problem, thus leading to increased collisions.

Scenario A Scenario B

Average number of neighbours 24 34
Average number of buddies 2,9 3,0
Reported false positives 0,1 16,8

TABLE VIII
NUMBER OF NEIGHBOURS, BUDDIES AND FALSE POSITIVES IN SCENARIOS

A AND B

Fig. 6 shows the time needed for a node to report the

failure of one of its buddies to the gateway, which in both

scenarios varies between 18 and 22 seconds. The time needed

to report the failure to the gateway depends on the parameters

of the failure detection protocol, heartbeat interval and thb.

The expected duration is the product of both values and thus

equals 20 seconds in the simulation scenarios. Depending on

the timespan between a node’s last heartbeat message and

its deactivation, this detection duration may vary as follows:

If the node is deactivated immediately before it sends its

next heartbeat message, the failure may already be detected

after tdetect − heartbeat interval = 18 seconds. If, on the

other hand, the node is deactivated immediately after it sends

its last heartbeat message, the failure may be detected after

tdetect + heartbeat interval = 22 seconds in the given

scenario.
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Fig. 6. Node failure reporting time, Simulation of scenario A and B

VI. PROTOTYPE EXPERIMENTS

A. Hardware

In order to demonstrate the effectiveness of the presented

protocols, they were tested on iSense sensor nodes from

coalesenses [11]. The iSense nodes use a 16MHz 32 Bit

RISC wireless controller (JN5139) and have 120 KB of

external flash and 90 KB RAM. Their radio operates in the

2.4 GHz band and is IEEE 802.15.4 [8] compliant with a

data rate of 250 kbit/s and provides hardware AES encryption.

Furthermore, the Security Sensor Module comprising a passive

infrared (PIR) sensor was applied. The PIR sensor AMN14112

is capable of detecting moving objects whose temperature

differs from that of their environment in distances of up to 10
meters within an 110◦ angle and will be used for trespasser

detection. Field tests have shown that the detection range

increases to up to 15 m with larger temperature difference,

higher speed and bigger size of the object.

Real-world deployment of sensor networks is a difficult task

as described in [12] and memory and debugging possibilities

are limited on the hardware platform when compared to the

simulator. Due to this, a step-by-step approach towards the

intended prototype of 200 nodes was chosen. In the next sec-

tion, the first prototype scenario is described. It comprises 16

nodes and features the trespass detection and the node failure

protocol. Based upon the findings in this first prototype, the

gathered data were used to modify the simulation parameters

used in Section V. Using these new parameters, simulations of

the prototype scenario were run and the results were directly

compared with the prototype.

B. Scenario

The first prototype comprised 16 sensor nodes and was

located in the University of Lübeck college sports gymnasium.
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Since this was the largest available test area, the scenario

parameters described in Section V were adapted to fit the new

circumstances. As shown in Table II, the nodes were placed

in a 4x4 grid with distances from 4 to 5m between the nodes,

thus forming a single-hop scenario. The marked node in the

second row on the left side in Fig. 8 was selected as a gateway

node. The gateway was connected to a laptop and used for

monitoring the network. As shown in Fig. 7, the nodes were

placed about 20cm from the ground on glass cylinders to limit

the effect of ground features on the radio interface.

Fig. 7. Nodes at the prototype site

To test the functionality of the trespass detection protocol,

several paths across the monitored area were defined, varying

in their direction and their start and end position regarding

the network topology. Three basic categories of paths are

identified: straight paths are paths that choose the shortest way

possible from one end to the other end of the area; diagonal

paths cross the area approximately diagonally; U-formed paths

enter the area and leave it on the same side. Fig. 8 shows

examples for each path category.

Fig. 8. Location nodes in the prototype and paths across the covered area

To conduct the experiments, a test person repeatedly per-

formed a total of eight trespasses, four of which followed

straight paths, two followed diagonal paths and two followed

u-form paths through the area. The trespasser varied his speed

during the experiment to show the flexibility of the trespass

detection protocol. Additionally, the protocol was tested under

heavy strain in order to ensure correct detection is possible

after a phase of increased protocol activity and thus, to show

that there are no unwanted side effects. For this purpose,

several persons entered the area for a duration of three minutes,

moving around randomly.

For the node failure detection protocol, eight field experi-

ments in the scenario described above were run, each featuring

a runtime of 1 hour. During the tests, the number of buddies

that were elected per node, their IDs and information indicat-

ing whether the buddy relations were formed bidirectionally

were recorded. During the operation phase, the messages sent

by all nodes were logged to measure packet loss and false

positive detections of node failures. At the end of the field

experiment, two nodes in the network were deactivated to

test the correctness of the failure detection and measure its

duration.

To show the result of attacks on the described protocols

under real-world conditions, the possibility to select nodes in

the network and let them perform certain attacks was added.

In the case of the node failure detection protocol, the selected

node Nattacker was told to perform a replay attack on the

heartbeat of a node in its neighbourhood (Nvictim). After

this command was sent to the node, it began monitoring and

recording the heartbeats from Nvictim. Afterwards, Nvictim

was deactivated and Nattacker performed the attack by re-

playing the recorded heartbeats, beginning shortly before the

other nodes would be detecting the nodes failure due to the

selected threshold thb. The time of the actual failure of Nvictim

and the time it took for its buddies to detect the failure

with Nattacker performing the replay attack were logged.

The value given for heartbeattimeout as shown in Table III

was selected considerably big to enable the demonstration

of replay attacks. Depending on the accuracy of the time

synchronization protocol, heartbeattimeout can be selected as

low as the maximal time difference between two neighbouring

nodes.

After the real-world experiments were finished, the col-

lected data was analysed as described in the next section.

The simulation parameters were improved based upon these

results and repeated simulations with the same settings used

in the prototype. These simulations comprised 16 nodes, had

a runtime of 1 hour and were performed using the same 20

seeds used in the simulations described in Section V. The next

section presents the results of the prototype and the modified

simulations.

C. Results

During the experiment, each of the eight specified trespasses

was performed 20 times. The trespass detection protocol was

configured with aggregate size = 2, meaning that when a

node knows of two PIR events, it floods the network with an

AllEvents message.
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With respect to the comparability of real-world and sim-

ulation result, it is foremost interesting which of the nodes

register the according PIR events. Fig. 9 shows an example of

a diagonal path; the simulation result is shown in the network

sketch to the left of the separation bar, the figure to the right

illustrates the prototype result.

Fig. 9. Exemplary comparison of simulation and prototype result

The marked nodes registered a PIR event during the tres-

pass. The figure shows that simulation and prototype be-

haviours only differ in the reaction of one node, which is a very

convincing result. Both simulation and prototype experiment

showed very little variance per path through the network,

regarding which nodes detect a PIR event. This behaviour was

observed regardless of the path category.

Furthermore, in both the prototype and the simulated scenar-

ios, all trespasses were correctly detected. Due to the single-

hop quality of the scenario, both the broadcast and flooded

AllEvents messages were immediately received by the data

gateway. This means the alarm was raised the same time the

gateway received enough AllEvents messages; therefore, no

detection delay was introduced by the flooding mechanism in

this scenario.

The results of the buddy election phase were analysed to

determine how many buddies each node elected and whether

the buddy relations are bidirectional. Fig. 10 shows the dis-

tribution of the number of buddies that were elected by the

nodes. While only 2% of the nodes have 2 buddies and 5

to 9% have 4 buddies, almost all nodes in the network have

the desired number of 3 buddies. Since nodes stop sending

requests to their neighbours if they already have the desired

number of min buddy count buddies, there is only one

possibility to accept more than min buddy count buddies:

this happens if node Na sends a buddy request message to

Nb and then receives a buddy request message from another

node Nc before it receives the buddy ACK from Nb. This

leads to Na becoming the buddy of both Nb and Nc, thus

increasing the number of buddies of Na by two. As shown

in Fig. 10, 2% of the nodes end up with a number of 2

buddies. This happens if all neighbours surrounding a node

already have the desired number of buddies before that specific

node sends a buddy request message to them, causing the

neighbour to reject the buddy request message. The analysis

of the buddy election phase further showed that all buddy

relations were bidirectional and that the results of the prototype

and simulation are almost identical.

Fig. 11 shows the time needed for a node to report the
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Fig. 10. Buddies per Node, Simulation and Prototype

failure of one of its buddies to the gateway. Detection duration

ranges between 18 and 22 seconds in the prototype and 19 and

23 seconds in the simulation results. Both prototype and sim-

ulation show the same distribution of reporting times, which

corresponds to the expectations based on the simulation results

in Section V. A closer look at both distributions reveals that

the real-world distribution is shifted towards shorter detection

durations by a little less than approx. 1 second in comparison

to the simulation. This is the result of measuring inaccuracy

that is inevitable in real-world experiments.

The analysis of the node failure message and the remaining

operation phase further showed that 100% of the node failures

were detected by all corresponding buddies and that no false

positive alarms were generated in the prototype scenario.
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Fig. 11. Node failure reporting time, Simulation and Prototype

Table IX depicts the impact on replay attacks on the node

failure detection duration. In the prototype, the detection du-

ration ranges from 18 to 22 seconds with an average reporting

duration of 19, 87 seconds. In the experiments, node Nattacker

began performing replay attacks at tattackstart = 15 seconds

after it heard the last heartbeat messages from Nvictim,
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presuming that the buddies of Nvictim might detect its failure

at 18 seconds. The buddies of Nvictim afterwards receive

the replayed heartbeat messages which pass the authenticity

tests imposed on the MAC fields but fail the age check

against heartbeattimeout after some time. This can be seen

in Table IX, where the detection duration in the presence of a

replay attacks ranges from 33 to 37 seconds with an average

reporting duration of 34, 71 seconds, suffering from a increase

of approx. 15 seconds caused by the replay attack. The times-

pan is the result of the time tattackstart = 15 seconds which

is selected by the attacker dependant on heartbeattimeout and

tdetect.

It has been shown that an attacker can only delay the

node failure detection for up to an upper bound that is

mainly dependant upon the heartbeattimeout value and the

values chosen for tdetect. It is impossible for the attacker to

delay the detection any further since they are unable to forge

heartbeat messages without the knowledge of the symmetric

keys between Nvictim and each of its buddies.

Without replay attacks With replay attacks Difference

Minimum 18 33 +15
Maximum 22 37 +15
Average 19,87 34,71 +14,84

TABLE IX
EFFECT OF REPLAY ATTACKS ON NODE FAILURE REPORTING TIME

VII. CONCLUSION

This paper presents FleGSens – a wireless sensor network

for the surveillance of critical areas. The FleGSens application

provides several protocols that ensure the secure detection of

trespassers even if an attacker compromises a limited number

of sensor nodes. Protocol performance was investigated first

by an extensive set of simulations in different scenarios and

then by application in a test bed. In general, the results of the

simulations and the real-world experiments closely resemble

each other. The trespass detection protocol shows the location

of all trespassers independent of their paths as soon as the

duty cycle allows for sending messages. The node failure

detection protocol assures that all nodes monitor a subset of

neighbours and detects all node failures once the threshold of

missed messages is exceeded. The parameters are adjustable to

the requirements of the application to achieve lower detection

durations, lower false positive rates and supports the use of

duty cycling. Attacks are either detected by non-compromised

nodes or they have no effect on the employed protocols.

Currently the testbed is being extended for further outdoor

experiments and to test the protocols in larger real-world

scenarios comprising up to 200 nodes. A solar panel, lithium

ion battery, charge controller module and a waterproof case

will be added to support long-term testing in the outdoor

environment.
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