Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32451
Effect of Scalping on the Mechanical Behavior of Coarse Soils

Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane


This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.

Keywords: Coarse soils, scalping, substitution, discrete element method, triaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489


[1] H. Taha, N.S. Nguyen, D. Marot, A. Hijazi and K. Abou-Saleh, Micro-scale investigation of the role of finer grains in the behavior of bidisperse granular materials. Granular Matter 21.2 (2019): 28.
[2] S. Thevanayagam and S. Mohan, Intergranular state variables and stress–strain behaviour of silty sands. Geotechnique 50.1 (2000): 1-23.
[3] B. Seif El Dine, Etude du comportement mécanique des sols grossiers à matrice. Diss. Ecole nationale des ponts et chaussées (France), 2007.
[4] D.M. Wood Muir and K. Maeda, Changing grading of soil: effect on critical states. Acta Geotechnica 3.1 (2008): 3-14.
[5] C. Salot, P. Gotteland, and P. Villard, Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granular matter 11.4 (2009): 221-236.
[6] C.O.R. Abbireddy and C.R.I. Clayton, Varying initial void ratios for DEM simulations, Geotechnique 60 (6) (2010) 4974-502.
[7] Y.J. Liu, G. Li, Z.Y. Yin, C. Dano, P.Y. Hicher, X.H. Xia and J.H. Wang, Influence of grading on the undrained behavior of granular materials. Comptes Rendus Mécanique 342.2 (2014): 85-95.
[8] R. Deluzarche, B. Cambou and J. Fry, Modeling of rockfill behavior with crushable particles. Numerical Modeling in Micromechanics via Particle Methods. Routledge, 2017. 219-224.
[9] U.S Army Corps of Engineers (1970), Laboratory soils testing. Engineer Manual EM (1110 - 2 - 1906).
[10] V.H. Torrey and R.T. Donagh, Strength parameters of earth-rock mixtures. Proceedings of the eleventh International Conference on Soil Mechanics and Foundation Engineering. San Francisco (1985), Vol. 2, pp. 1073-1076.
[11] L.S. Pedro, J.C Dupla, J. Canou, L. Dormieux and Y. Kazan. Comportement mécanique d’un sol grossier à matrice sous cisaillement monotone. Revue française de géotechnique 112 (2005): 35-42.
[12] P. Reiffsteck, J. Arbault, N. Sagnard, M. Khay, D. Subrin, C. Chapeau and D. Levacher, Mesures en laboratoire du comportement mécanique des sols hétérogènes. Bulletin des laboratoires des ponts et chaussées 268-269 (2007).
[13] C. Dano, Comportement mécanique des sols injectés. Diss. Ecole Centrale de Nantes (ECN), 2001.
[14] D. Leslie, Large scale triaxial tests on gravelly soils. In Proc. of the 2nd Pan-American Conf. on SMFE, Brazil, volume 1, pages 181-202, 1963.
[15] N. Valle, Comportement mécanique d’un sol grossier d’une terrasse alluvionnaire de la Seine. PhD thesis, Caen, 2001.
[16] J.C. Dupla, L.S. Pedro, J. Canou and L. Dormieux, Comportement mécanique des sols grossiers de référence. Bulletin des laboratoires des ponts et chaussées, (268) :31-58, 2007.
[17] N.L. Andrianatrehina, H. Souli, J.J. Fry, J.M. Fleureau and J. Rech, Effet des fines sur les paramètres mécaniques consolidés non drainés de matériaux granulaires. Congrès français de mécanique. AFM, Association Française de Mécanique, 2015.
[18] W.G. Holtz and H.J. Gibbs, Triaxial shear tests on pervious gravelly soils. Journal of the Soil Mechanics and Foundations Division, 82(1) :1-22, 1956.
[19] W.G. Holtz, Triaxial shear characteristics of clayey gravel soils. US Bureau of Reclamation, 1961.
[20] G. Post, Design parameters for fills, in 7th European Conference on Soil Mechanics and Foundations Engineering, Vol. 4, London (1979).
[21] H. Dendani, Comportement de matériaux de barrages en terre : étude expérimentale et modélisation. PhD thesis, Grenoble INPG, 1988.
[22] V. Šmilauer et al., Yade Documentation 2nd ed. The YadeProject (2015). DOI10.5281/zenodo.34073.
[23] T. Murthy, D. Loukidis, J. Carraro, M. Prezzi and R. Salgado, Undrained monotonicresponse of clean and silty sands. Géotechnique57(3), 273–288 (2007).
[24] R. Salgado, P. Bandini and A. Karim, A., Shear strength and stiffness of silty sand. J.Geotech. Geoenviron. Eng.126(5), 451–462 (2000).
[25] S. Thevanayagam, T. Shenthan, S. Mohan and J. Liang, Undrained fragility of cleansands, silty sands, and sandy silts. J. Geotech. Geoenviron. Eng.128(10), 849–859(2002).
[26] H. Taha, Mechanical behavior of eroded soils: numerical study based on the DEM. PhD dissertation, Université de Nantes, 2019.
[27] P.V. Lade, C.D. Liggio and J.A. Yamamuro, Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical testing journal 21 (1998): 336-347.
[28] B. Seif El Dine, J.C. Dupla, R. Frank, J. Canou and Y. Kazan, Mechanical characterization of matrix coarse-grained soils with a large-sized triaxial device. Canadian Geotechnical Journal 47, no. 4 (2010): 425-438.