
 

 
Abstract—Bioassay is the measurement of the potency of a 

chemical substance by its effect on a living animal or plant tissue. 
Bioassay data and chemical structures from pharmacokinetic and 
drug metabolism screening are mined from and housed in multiple 
databases. Bioassay prediction is calculated accordingly to determine 
further advancement. This paper proposes a four-step preprocessing 
of datasets for improving the bioassay predictions. The first step is 
instance selection in which dataset is categorized into training, 
testing, and validation sets. The second step is discretization that 
partitions the data in consideration of accuracy vs. precision. The 
third step is normalization where data are normalized between 0 and 
1 for subsequent machine learning processing. The fourth step is 
feature selection where key chemical properties and attributes are 
generated. The streamlined results are then analyzed for the 
prediction of effectiveness by various machine learning algorithms 
including Pipeline Pilot, R, Weka, and Excel. Experiments and 
evaluations reveal the effectiveness of various combination of 
preprocessing steps and machine learning algorithms in more 
consistent and accurate prediction. 
 

Keywords—Bioassay, machine learning, preprocessing, virtual 
screen.  

I. INTRODUCTION 

ODERN drug discovery encapsulates a myriad of 
sciences and technology. The application of in silico 

modeling has become popular to guide researchers to develop 
structure activity relationships (SAR) between new chemical 
entities (NCE) and bioassays [1]. One application of in silico 
modeling is virtual screening, which predicts a bioassay 
endpoint from the substance data that describes the NCE. 
Bioassay data measures the activity of an enzyme or receptor 
endogenous to the human body. A substance can have none to 
a measurable amount of potency on the enzyme or receptor. 
The endpoint is a non-calculable, continuous datum that can 
only be obtained from the bioassay. The virtual screening 
models are developed from machine learning algorithms 
(MLA) and training sets that include substance and bioassay 
data. Accurate SAR from virtual screening depends on the 
quality and meaningfulness of the data. Effective data 
preprocessing of substance and bioassay data is critical to the 
development of effective virtual screening models. Besides, 
having an optimized MLA is important to performance and 
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accuracy of the results. 
Bioassay data and chemical structures are mostly mined 

from multiple databases. Instance results from the bioassays 
and substance data for the NCEs are warehoused in multiple 
SQL databases. Instance selection is focused on how to handle 
multiple instances of the same NCE within a dataset, bioassay 
endpoints outside the expected range (also known as outliers) 
and splitting the dataset into training, testing and validation 
sets. NCEs can be referenced multiple times through the same 
assay, either as a control for the bioassay or a recheck of the 
final value. This can create multiple measured endpoints for 
the same NCE. The outcome from the bioassay can vary 
significantly. It is therefore critical to efficiently identify 
multiple instances of the same compound ID and examine 
their respective endpoints. Unfortunately, there are not many, 
if any at all, corresponding studies.  

This paper studies and recommends pertinent methodology 
that can optimize the preprocessing of the input dataset, 
improve the reliability of the predicted values, and enhance 
the robustness of the models. Selected MLA are compared and 
refined for better accuracy in result prediction. Analysis uses 
development tools Pipeline Pilot (PP) [2], R [3], Weka [4], 
and Excel [5]. Pipeline Pilot is a high-level language that can 
retrieve data from multiple databases. Each retrieval (also 
known as observation) can be processed individually and 
recompiled into a dataset of multiple optional file formats. 
Graphical user interface is available to visualize the data 
processing. Pipeline Pilot contains many default and licensed 
components for handling chemical structures and processing 
scientific data [6]. The R environment is a statistical 
computing and graphics environment designed to quickly 
process datasets in vector and matrix formats. It is an ideal 
choice to preprocess and summarize datasets prior to import 
into Weka, which supports flexible implementation of selected 
learning algorithms. Section II discusses methods of 
preprocessing. Section III presents experiments and results. 
The paper concludes with the discussion. 

II. METHODS 

The datasets used in this project are results from in vitro 
bioassay screenings for drug-drug interactions (DDI) and 
pharmacokinetic (PK). The DDI screenings screen for 
inhibitory potential of CYP2D6 and CYP3A4 human liver 
enzymes. The PK screenings determine the intrinsic clearance 
of the NCEs in human liver microsomes (HLM) and rat liver 
microsomes (RLM). Datasets are processed through instance 
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selection, discretization, normalization, feature selection, and 
machine learning.  

NCEs can be assayed multiple times to detect duplicates or 
to determine the maximum and minimum cutoffs according to 
varied criteria. The complete datasets are separated into 
training sets and validation sets; 80% of the dataset is used for 
training and testing the MLA, and 20% of the dataset is 
reserved for validation [1]. Two types of sampling are 
compared in order to learn how sampling affects the 
robustness of the classification by MLA. The first is 
undersampling, where observations are decreased based on 
their bioassay endpoint values. The other is oversampling in 
which observations are increased also based on their bioassay 
endpoint values.  

In the undersampled datasets, the numbers of active or 
inactive observations are reduced to one half or one third. In 
the oversampled datasets, the number of active or inactive 
observations can be doubled, tripled, or quadrupled. If the 
undersampling or oversampling is implemented on the active 
observations, the number of inactive observations remains 
fixed. On the other hand, if the undersampling or 
oversampling is implemented on the inactive observations 
then the number of active observations remains fixed. Fig. 1 
shows the variations of the active and inactive observations for 
the CYP2D6 dataset. The Active:Inactive column represents 
the change in the number of active or inactive observations 
compared to the original datasets, which is denoted by 1:1. 

 

 

Fig. 1 Number of Active vs. Inactive Samples 
 

Discretization [7] classifies a continuous dataset into a 
discrete list of values. The process consists of binning the 
datasets into a predetermined number of outcomes. This 
reduces the number of possible outcomes and enables the 
developer to control the balance between accuracy and 
precision. Reducing the numbers of possible outcomes to a 
discrete list reduces the overall precision of the predictions; 
but increases the accuracy. Balancing accuracy over precision 
is dependent on the goals of the end users [8]. The 
discretization process first determines the maximum and 
minimum values for the each of the datasets, and a cutoff 
value to identify if an NCE is active or inactive in the 
bioassay. Two (binary) bins are used to classify if an outcome 
is considered active or inactive. Three bins are used to identify 
if the outcome would be a maximum value, minimum value, 
or somewhere in between. Five bins and 10 bins are used to 
approximate the continuous bioassay data endpoints. In Fig. 2, 

bin values are set based on the data range, maximum and 
minimum values and active/inactive cutoff. Using R, the 
outcomes from the bioassay endpoints were discretized into 2 
bins (binary), 3 bins, 5 bins or 10 bins. Fig. 3 shows how the 
original HLM bioassay outcomes can be transformed into 2 
bins, 3 bins, 5 bins and 10 bins. 

In normalization [7], data attributes and outcomes are 
normalized between the minimum value 0 and maximum 
value 1 according to the following equation, in which 

is the normalized value,  is the value of 

interest,  is the minimum value, and  is the 
maximum value. 

 

	 	  
 
Feature selection has three essential elements; feature 

reduction, feature construction, and feature set selection. 
Feature reduction, or attribute reduction, is implemented with 
the raw datasets, which includes the compound IDs, bioassay 
endpoints, chemical structures, and various attributes. Feature 
construction generates the basic chemical structure properties 
and chemical fingerprints that breakdown a chemical structure 
into fragments. Calculations are carried out with the Chemical 
Property Calculator script in Pipeline Pilot.  

 

 

Fig. 2 Bin Values for Discretization of HLM Dataset 
 

 

Fig. 3 Sample Discretization Results for HLM Dataset 
 
Chemical fragment attributes are created in Pipeline Pilot. If 

Compound 

ID

Outcome Value 10 Bin 

Value

5 Bin 

Value

3 Bin 

Value

Binary 

Value
1 139 134 78 207 active
2 24.5 38 78 207 active
3 14.5 38 78 207 active

4 399 399 399 399 active
5 14 14 14 14 inactive
6 399 399 399 399 active
7 14 14 14 14 inactive
8 14 14 14 14 inactive

9 14 14 14 14 inactive
10 14 14 14 14 inactive
11 162 182 207 207 active
12 210 231 207 207 active

13 399 399 399 399 active
14 18 38 78 207 active
15 71 86 78 207 active
16 62 38 78 207 active

17 399 399 399 399 active
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the fragment exists in a chemical structure, the value is set to 
1; otherwise, it is set to 0. There are various processes to 
generate chemical fragments (also known as fingerprints), e.g. 
Daylight [9], BCI [10], UNITY 2D [11], and MDL key 
fingerprinting [12]. MDL is selected for its restricted number 
of fragments and its integration within PP. MDL 
fingerprinting uses a general molecule perception algorithm to 
identify and count atoms and bonds and to recognize 
chemical's structural properties. Keybits are created for 
chemical structures. Every chemical structure has one or more 
keybits. The total number of keybits depends on the number 
and types of atoms and bonds. Keybits are then compared to 
the MDL keyset. The MDL keyset contains 960 unique 
chemical fragments. If the keybit from the input structure 
matches a keybit in the chemical fragments, the structure is 
said to contain that fragment. Accordingly, chemical 
fingerprint is generated which describes the chemical structure 
as a set of chemical fragments.  

The normalized datasets are then processed by Decision 
Tree (DT), Logistic Regression (LogR), and Neural Networks 
(NN) machines learning algorithms. Decision Tree machine 
learning uses Weka's REPTree algorithm and REPTree is a 
Classification and Regression Tree algorithm that predicts 
both classification and continuous outcomes [4]. REPTree 
takes a top down approach to identify the variable and 
splitting criteria and form a tree of nodes and leaves. Nodes 
are the splitting criteria and leaves are the groups that result 
from splitting. The splitting criterion is based on outcomes' 
homogeneity which is measured by impurity function. 
Impurity functions quantify how many outcomes are the same 
within each leaf. REPTree uses entropy as the impurity 
measure [13]. Entropy impurity functions calculate the 
probability of the occurrences of an event; the lower the 
probability the higher the entropy value. Calculation first tests 
and identifies variable and splitting criteria that can grow a 
leaf with the least amount of impurity. Outcomes are then 
divided into two groups based upon the findings. These two 
steps iterates until the number of outcomes in the leaves are 
too small or has met the purity criteria. 

Logistic Regression machine learning adopts Weka's 
Logistics Algorithm. LogR predicts a binary outcome using 
one or more variables. The outcomes are 1 (i.e. true, active, 
not observed) and 0 (i.e. false, not active, observed). LogR 
calculates a log curve for the data. A threshold value of 0.5 is 
assigned to the dependent outcome. If the result from the log 
curve is greater than 0.5 then the outcome is 1, otherwise the 
outcome is 0 [14]. 

Neural Network machine learning uses Weka's Multilayer 
Perceptron algorithm. NN is a black box, non-linear 
environment. For each attribute of the dataset, an input unit is 
initialized with the attribute's value. Depending on the 
machine learning implementation, the Multilayer Perceptron 
can result in multiple hidden layers. The last layer is the 
output layer, which provides the prediction data. The number 
of possible outcomes determines the number of output layers. 
When predicting a continuous output, the output units become 
unthresholded linear units [15]. All units are connected via 

weights each of which has a numeric value. The weights retain 
the knowledge learned in the training phase. As the model is 
trained, the weights are the only variable that are updated and 
retrained from one training cycle (also known as epoch) to 
another. Initial weights are assigned at random by the 
algorithm. If the Neural Network accurately predicts the 
outcomes for the observation, no changes are made to the 
weights. If the model predicts a wrong outcome, weights are 
updated. The degree of change in the weights is set by the 
learning rate. In the Multilayer Perceptron algorithm, the 
number of epochs can be set by the user. Higher epoch value 
translates to more training which typically increase the 
robustness and accuracy of the predictions. However, if the 
epoch value is too high, computation power can be wasted 
without corresponding gains in accuracy. Therefore, a proper 
epoch value is critical to the balance of efficiency and 
accuracy. Optimization of the Multilayer Perceptron is 
focused on varying the learning rate, number of hidden layers, 
and number of epochs. As shown in Fig. 4, the number of 
hidden layers are set to a, i or o. 

DT, LogR, and NN are further trained through validation in 
which the training data is divided into three equal portions; 
two for training and one for testing. Error measurements for 
continuous outcomes are evaluated with Root Mean Squared 
Error and Correlation Coefficients. For binary outcomes, 
Confusion Matrix is generated for the outcomes, sensitivity, 
and specificity. 

 

 

Fig. 4 Number of Hidden Layers in Neural Network Algorithm 
 

Root Mean Squared Error (RMSE), ∑ ⁄ , 
calculates the error difference between the actual outcome a 
and predicted outcome p.RMSE gives an error estimation that 
predicts the dimensions of the outcomes. RMSE-based 
comparisons are used when comparing models on the same 
scale. For datasets of different scales, Percent RMSE 

(%RMSE), ∑ ⁄ , is applied by 
dividing RMSE into the range of the scale. 

Correlation Coefficient (CC) [16] equals ⁄ , 
where; 

 
∑ ̅ 1⁄   

 
∑ ̅ 1⁄   

 
∑ 1⁄   

 
CC calculates the statistical correlation between the actual 

values a and predicted values p. The value of 1 indicates the 
model perfectly predicts the outcomes 100% of the time. The 

Number of Hidden 
Layer Symbol Number of Hidden Layers

a
(Number of Attributes + 
Number of Outcomes)/2

i Number of Attributes
o Number of Classes
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value of 0 indicates there is no correlation between the 
predictions and the actual outcomes. The value of -1 indicates 
the model predicts the opposite outcome 100% of the time. CC 
can be used to assess the performance of the MLAs across the 
datasets since CC's value is independent of the scale of the 
outcome.  

Confusion Matrix (CM) is a table that tabulates the number 
of true positives, true negatives, false positives, and false 
negatives. Sensitivity is the ratio of true positives vs. the sum 
of true positives and false negatives, and specificity is the ratio 
of true negatives vs. the sum of false positives and true 
negatives. The sensitivity value of 1 means the model 
correctly predicts the true positive values 100% of the time. 
The specificity value of 1 means the model correctly predicts 
the true negatives values 100% of the time. The sensitivity or 
specificity value of 0 indicates the model never predicts the 
correct outcome for either positive or negative values. The 
sensitivity and specificity values can be used in combination 
to evaluate the performance of a prediction model. Active 
compounds are considered a negative finding. Structures that 
are predicted to be active in CYP2D6, CYP3A4, HLM or 
RLM may not be synthesized. If the virtual screens predict the 
compounds as active but in practice otherwise, then potentially 
good drug candidates could be eliminated before they are ever 
synthesized and tested. Therefore, specificity is sought to be 
maximized. 

Lastly, the Correctly Classified Observations (CCO) [16] 
provides estimation for the accuracy of the prediction model. 
Following is the formula: 

 
∑ ∑

∑ 	 	∑ 	 	∑ 	 	∑
  

III. EXPERIMENTS AND RESULTS 

Dataset endpoints are categorized as inhibition data and 
intrinsic clearance data. Inhibition data, IC50, is the 
concentration of an inhibitor to inhibit 50% of the activity of 
specific enzymes. Intrinsic clearance data, CLint, is a substrate 
in pool of enzymes. IC50 is measured in micromoles (uM). A 
known substrate at a single concentration for the enzymes 
CYP2D6 and CYP3A4 is tested with a test compound at 
multiple concentrations to evaluate the inhibition of the test 
compound on the substrate. If the test compound, the inhibitor, 
inhibits enough turnover of the substrate by the enzyme, an 
IC50 can be calculated specific to the test inhibitor and can be 
used to evaluate the overall inhibitory potential of the test 
compound on the enzyme. The enzymes CYP2D6 and 
CYP3A4 are endogenous to the human body and are 
responsible for the metabolism of the majority of drugs. 
Therefore, new drugs should not be inhibitors of these 
enzymes. 

CLint is measured in micrograms of test compound per 
milligram of protein per milliliter of the test mixture volume 
(ug/mg/mL). The test compound, substrate, is tested in human 
liver microsomes (HLM) and/or rat liver microsomes (RLM). 
The substrate is metabolized by the enzymes in the liver 
microsomes and time points are taken over 45 minutes. The 

amount of substrate remaining is measured at each of the time 
points, and a CLint value is calculated for the test compound 
in either HLM or RLM. CLint value smaller than 14 
ug/mg/mL is often desired as it indicates lower overall 
metabolism in liver microsomes. A potential new drug with 
lower CLint will be available at therapeutic concentration in 
the human body for a prolonged period of time. 

Datasets first undergo the instance selection. Fig. 5 shows 
the comparison before and after the removal of duplicates. 

 

 

Fig. 5 Instance Selection 
 

%RMSE and CC are similar across datasets and MLAs with 
the exception of NN predictions on CYP3A4. The mean 
%RMSE in DT's predicted outcomes is 36 ±3% and mean CC 
in DT's predicted outcomes is 0.48 ±0.06. The mean %RMSE 
in NN's predicted outcomes is 90 ±106% and mean CC in 
NN's predicted outcomes is 0.30 ±0.24. Excluding CYP3A4 
from the NN predictions gives a mean %RMSE of 37 ±3% 
and mean CC of 0.40 ±0.14. With the exception of CYP3A4 
in the NN predictions, the %RMSE indicates both DT and NN 
can predict 36 to 37% of the actual value. CC between 0.40 
and 0.48 indicates a weak correlation between actual outcomes 
and predicted outcomes. The high %RMSE and low CC for 
NN’s CYP3A4 predictions (248% and -0.01, respectively) 
implies no correlation between the predicted outcomes and 
actual outcomes. Figs. 6 and 7 are the charts for %RMSE and 
CC, respectively. 

 

 

Fig. 6 Instance Selection %RMSE 
 

Results of the second step, discretization, are shown in Fig. 
8 to Fig. 12. The non-binary bins and continuous datasets have 
high %RMSE and low CC, which indicate a weak correlation 
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between actual and predicted outcomes. However, the binary 
datasets have moderate to high CCO values. The binary 
datasets thus can provide the most accurate predictions. As the 
result, the binary (2 bins) datasets are selected into the 
following normalization step. 

 

 

Fig. 7 Instance Selection CC 
 

 

Fig. 8 Discretization %RSMC DT 
 

 

Fig. 9 Discretization %RSMC NN 
 

Fig. 13 shows the result of normalization. Fig. 14 depicts 
the relation between sensitivity and specificity among the 
MLAs with and without normalization. Since the objective is 
to minimize the number of false positives, the non-normalized 
datasets best meet the criteria. Therefore, normalization is not 
implemented in the following steps. 

Sensitivity and specificity are further evaluated with 
oversampling and undersampling. The result, in Fig. 15, 
shows that the 1:1 datasets had the highest specificity. 
Therefore, datasets with 1:1 sampling are selected for next 
step feature selection. 

 

 

Fig. 10 Discretization CC DT 
 

 

Fig. 11 Discretization CC NN 
 

 

Fig. 12 Discretization CC Binary Bin 
 

Feature selection results are shown in Fig. 16, in which 
ChemProp denotes basic chemical property, FingerOnly 
denotes MDL fingerprints, and All denotes the combination of 
both. For CYP2D6, the DT algorithm with All attributes is 
selected for its high specificity and acceptable sensitivity. For 
CYP3A4, the DT algorithm with ChemProp attributes is 
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selected for its high specificity. For HLM, the NN algorithm 
with All attributes is selected because of high specificity and 
good sensitivity. For RLM, the NN algorithm with All and 
FingerOnly attributes provides the same highest specificity 
and sensitivity results. Since the dataset with All attributes 
contains more descriptive information, corresponding NN is 
selected for the final machine learning optimization. 

For the CYP2D6 and CYP3A4 datasets that were predicted 
with DT, the only optimization step required is pruning. No 
gains were observed. Thus using DT without pruning provides 
a more accurate prediction. For both HLM and RLM datasets, 
a learning rate of 0.03, i hidden layers, and 100 epochs 
provides the most accurate results with the highest specificity. 
Figs. 17 and 18 depict the results, respectively. 

 

 

Fig. 13 Normalization Results 
 

 

Fig. 14 Normalization Sensitivity vs. Specificity 
 

 

Fig. 15 Over-/Under-sampling Sensitivity vs. Specificity 
 

 

Fig. 16 Feature Selection Results 
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Fig. 17 HLM NN Optimization 
 

 

Fig. 18 RLM NN Optimization 

IV. CONCLUSION 

Prediction with raw data can be very unreliable. 
Discretization is an important tool for more useful results. 
Feature selection is demonstrated to help optimize machine 
learning. Once the MLA is optimized, users can add features 
from fingerprinting to finalize the model. Effective 
preprocessing not only makes better use the valuable 
computation resources but also help ensure more accurate and 
consistent prediction. 
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