Search results for: mechanical force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1966

Search results for: mechanical force

1696 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics

Authors: Arturo Ayala-Hernandez, Humberto H´ıjar

Abstract:

We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.

Keywords: Multiparticle Collision Dynamics, Fluid-Solid Boundary Conditions, Molecular Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
1695 Investigation on Ship Collision Phenomena by Analytical and Finite Element Methods

Authors: Abuzar.Abazari, Saeed. Ziaei-Rad, Hoseein. Dalayeli

Abstract:

Collision is considered as a time-depended nonlinear dynamic phenomenon. The majority of researchers have focused on deriving the resultant damage of the ship collisions via analytical, experimental, and finite element methods.In this paper, first, the force-penetration curve of a head collision on a container ship with rigid barrier based on Yang and Pedersen-s methods for internal mechanic section is studied. Next, the obtained results from different analytical methods are compared with each others. Then, through a simulation of the container ship collision in Ansys Ls-Dyna, results from finite element approach are compared with analytical methods and the source of errors is discussed. Finally, the effects of parameters such as velocity, and angle of collision on the forcepenetration curve are investigated.

Keywords: Ship collision, Force-penetration curve, Damage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
1694 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model

Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard

Abstract:

Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ash is mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After, analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.

Keywords: Bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESARLCPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
1693 Design and Fabrication of a Column-Climber Robot (Koala Robot)

Authors: Maziar Sadeghi, Amir Moradi

Abstract:

This paper proposes a robot able to climb Columns. This robot is not dependent on the diameter and material of the columns. Some climbing robots have been designed up to now but Koala robot was designed and fabricated for climbing columns exclusively. Simple kinematics of climbing in the nature inspired us to design this robot. We used two linear mechanisms to grip the column. The gripper consists of a DC motor and a power screw mechanism with a linear bushing as a guide. This mechanism provides enough force to grip the column. In addition we needed an actuator for climbing the column; hence, two pneumatic jacks were used. All the mechanical parts were designed according to the exerted forces and operational condition. The prototype can be simply installed and controlled on the column by an inexperienced operator. This robot is intended for inspection and surveillance of pipes in oil industries and power poles in electric industries.

Keywords: Robot, Column-climber, Gripping mechanism, Koala.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1692 The Evaluation and the Comparison of the Effect of Without Engine Power and Power Mechanical Systems on Rice Weed

Authors: F. E. Cherati, T. Naij , A. Amraei, Y. Hosseinpor

Abstract:

In order to study the influence of different methods of controlling weeds such as mechanical weeding and mechanical weeder efficiency analysis in mechanical cultivation conditions, in farming year of 2011 an experiment was done in a farm in coupling and development of technology center in Haraz,Iran. The treatments consisted of (I) control treatment: where no weeding was done, (II) use of mechanical weeding without engine and (III) power mechanical weeding. Results showed that experimental treatments had significantly different effects (p=0.05) on yield traits and number of filled grains per panicle, while treatments had the significant effects on grain weight and dry weight of weeds in the first, second and third weeding methods at 1% of confidence level. Treatment (II) had its most significant effect on number of filled grains per panicle and yield performance standpoint, which was 3705.97 kg ha-1 in its highest peak. Treatment (III) was ranked as second influential with 3559.8 kg ha-1. In addition, under (I) treatments, 2364.73 kg ha-1 of yield produced. The minimum dry weights of weeds in all weeding methods were related to the treatment (II), (III) and (I), respectively. The correlation coefficient analysis showed that total yield had a significant positive correlation with the panicle grain yield per plant (r= 0.55*) and the number of grains per panicle-1 (r= 0.57*) and the number of filled grains (r= 0.63*). Total rice yield also had negative correlation of r= -0. 64* with weed dry weight at second weed sampling time (17 DAT). The weed dry weight at third and fourth sampling times (24 and 40 DAT) had negative correlations of -0.65** and r=-0.61* with rice yield, respectively.

Keywords: Dry weight, without engine mechanical weeder, power mechanical weeder, yield rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
1691 Structure-vibration Analysis of a Power Transformer(154kV/60MVA/Single Phase)

Authors: Young-Dal Kim, Jae-Myung Shim, Woo-Yong Park, Sung-joong Kim, Dong Seok Hyun, Dae-Dong Lee

Abstract:

The most common cause of power transformer failures is mechanical defect brought about by excessive vibration, which is formed by the combination of multiples of a frequency of 120 Hz. In this paper, the types of mechanical exciting forces applied to the power transformer were classified, and the mechanical damage mechanism of the power transformer was identified using the vibration transfer route to the machine or structure. The general effects of 120 Hz-vibration on the enclosure, bushing, Buchholz relay, pressure release valve and tap changer of the transformer were also examined.

Keywords: Structure-Vibration, Transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3430
1690 Stress Variation of Underground Building Structure during Top-Down Construction

Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung

Abstract:

In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.

Keywords: Construction of building, top-down construction method, earth pressure distribution, member force, stress concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
1689 The Effects of Plate-Support Condition on Buckling Strength of Rectangular Perforated Plates under Linearly Varying In-Plane Normal Load

Authors: M. Tajdari, A. R. Nezamabadi, M. Naeemi, P. Pirali

Abstract:

Mechanical buckling analysis of rectangular plates with central circular cutout is performed in this paper. The finiteelement method is used to study the effects of plate-support conditions, aspect ratio, and hole size on the mechanical buckling strength of the perforated plates subjected to linearly varying loading. Results show that increasing the hole size does not necessarily reduce the mechanical buckling strength of the perforated plates. It is also concluded that the clamped boundary condition increases the mechanical buckling strength of the perforated plates more than the simply-supported boundary condition and the free boundary conditions enhance the mechanical buckling strength of the perforated plates more effectively than the fixed boundary conditions. Furthermore, for the bending cases, the critical buckling load of perforated plates with free edges is less than perforated plates with fixed edges.

Keywords: Buckling, Perforated plates, Boundary condition, Rectangular plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
1688 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: Cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
1687 Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates

Authors: S. Larbi, R. Bensaada, S. Djebali, A. Bilek

Abstract:

The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials.

Keywords: FRP laminates, hygrothermal aging, mechanical properties, theory of laminates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
1686 Optimization of the Control Scheme for Human Extremity Exoskeleton

Authors: Yang Li, Xiaorong Guan, Cheng Xu

Abstract:

In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.

Keywords: Human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
1685 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions

Authors: Walid M. Adel, Liang Guo-Zhu

Abstract:

To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.

Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, master curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
1684 Force Analysis of an Automated Rapid Maxillary Expansion (ARME) Appliance

Authors: A.A.Sharizli, N.A.Abu Osman, A.A.Saifizul

Abstract:

An Automated Rapid Maxillary Expander (ARME) is a specially designed microcontroller-based orthodontic appliance to overcome the shortcomings imposed by the traditional maxillary expansion appliances. This new device is operates by automatically widening the maxilla (upper jaw) by expanding the midpalatal suture [1]. The ARME appliance that has been developed is a combination of modified butterfly expander appliance, micro gear, micro motor, and microcontroller to automatically produce light and continuous pressure to expand the maxilla. For this study, the functionality of the system is verified through laboratory tests by measure the forced applied to the teeth each time the maxilla expands. The laboratory test results show that the developed appliance meets the desired performance specifications consistently.

Keywords: Maxillary Expansion, Microcontroller, Automated, Orthodontist, Force Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
1683 Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications

Authors: Elham Farahmand, Fatimah Ibrahim, Samira Hosseini, Ivan Djordjevic, Leo. H. Koole

Abstract:

Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free-radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases.

Keywords: Polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA), Polymeric material, Atomic Force Microscopy, roughness, carboxylic functional groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
1682 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: Waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
1681 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: Dynamic Force Identification, Dynamic Responses, Sub-structure and Time Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1680 Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models

Authors: S. Daneshmand, A. Ahmadi Nadooshan, C. Aghanajafi

Abstract:

Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.

Keywords: Aerodynamic characteristics, stereolithography, layer thickness, Rapid prototyping, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
1679 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type

Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long

Abstract:

This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.

Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1678 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: Blast furnace iron slag, HMA, Marshall/stiffness, indirect tensile strength, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
1677 Improvement in Mechanical Behavior of Expulsion with Heat treated Thermite Welded Rail Steel

Authors: S.Rajanna, H.K.Shivanand, Akash Deep B.N

Abstract:

Thermite welding is mainly used in world. The reasons why the thermite welding method is widely used are that the equipment has good mobility and total working time of that is shorter than that of the enclosed arc welding method on site. Moreover, the operating skill, which required for thermite welding, is less than that of for enclosed arc welding. In the present research work, heat treatment and combined 'expulsion and heat treatment' techniques were used improve the mechanical properties and weldment structure. The specimens were cut in the transverse direction from expulsion with Heat treated and heat treated Thermite Welded rails. Specimens were prepared according to AWS standard and subjected to tensile test, Impact test and hardness and their results were tabulated. Microstructural analysis was carried out with the help of SEM. Then analyze to effect of heat treated and 'expulsion with heat treated' with the properties of their thermite welded rails. Compare the mechanical and microstructural properties of thermite welded rails between heat expulsion with heat treated and heat treated. Mechanical and microstructural response expulsion with heat treated thermite welded rail is higher value as compared to heat treatment.

Keywords: Expulsion, Heat treatment, Mechanical, Weldment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
1676 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315
1675 Characterization of Metallurgical and Mechanical Properties of the Welded AISI 304L Using Pulsed and Non-Pulsed Current TIG Welding

Authors: A. A. Ugla

Abstract:

The present paper aims to investigate the effects of the welding process parameters and cooling state on the weld bead geometry, mechanical properties and microstructure characteristics for weldments of AISI 304L stainless steel. The welding process was carried out using TIG welding with pulsed/non-pulsed current techniques. The cooling state was introduced as an input parameter to investigate the main effects on the structure morphology and thereby the mechanical property. This paper clarifies microstructure- mechanical property relationship of the welded specimens. In this work, the selected pulse frequency levels were 5-500 Hz in order to study the effect of low and high frequencies on the weldment characteristics using filler metal of ER 308LSi. The key findings of this work clarified that the pulse frequency has a significant effect on the breaking of the dendrite arms during the welding process and so strongly influences on the tensile strength and microhardness. The cooling state also significantly affects on the microstructure texture and thereby, the mechanical properties. The most important factor affects the bead geometry and aspect ratio is the travel speed and pulse frequency.

Keywords: Microstructure, mechanical properties, pulse frequency, high pulse frequency, austenitic stainless steel, TIG welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1674 Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters

Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak

Abstract:

In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.

Keywords: Brute force thresholding, directional smoothing, direction dependent mask, undecimated wavelet transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
1673 FEM Analysis of the Interaction between a Piezoresistive Tactile Sensor and Biological Tissues

Authors: Ahmad Atieh, Masoud Kalantari, Roozbeh Ahmadi, Javad Dargahi, Muthukumaran Packirisamy, Mehrdad Hosseini Zadeh

Abstract:

The present paper presents a finite element model and analysis for the interaction between a piezoresistive tactile sensor and biological tissues. The tactile sensor is proposed for use in minimally invasive surgery to deliver tactile information of biological tissues to surgeons. The proposed sensor measures the relative hardness of soft contact objects as well as the contact force. Silicone rubbers were used as the phantom of biological tissues. Finite element analysis of the silicone rubbers and the mechanical structure of the sensor were performed using COMSOL Multiphysics (v3.4) environment. The simulation results verify the capability of the sensor to be used to differentiate between different kinds of silicone rubber materials.

Keywords: finite element analysis, minimally invasive surgery, Neo-Hookean hyperelastic materials, tactile sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
1672 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait-Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: Demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
1671 Dependence of Shaft Stiffness on the Crack Location

Authors: H. M. Mobarak, Helen Wu, Chunhui Yang

Abstract:

In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L.

Keywords: Cracked shaft, crack location, shaft stiffness, unbalanced force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
1670 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, Dynamics, Lagrange, Parallel platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
1669 Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

Authors: Ming-Hui Lee, Tsung-Chien Chen, Yuh-Shiou Tai

Abstract:

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Keywords: Fuzzy Input Estimator, Kalman Filter, RecursiveLeast Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
1668 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
1667 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet

Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha

Abstract:

Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.

Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162