
 

 

  
Abstract—A time domain approach is used in this paper to 

identify unknown dynamic forces applied on two dimensional frames 
using the measured dynamic structural responses for a sub-structure 
in the two dimensional frame. In this paper a sub-structure finite 
element model with short length of measurement from only three or 
four accelerometers is required, and an iterative least-square 
algorithm is used to identify the unknown dynamic force applied on 
the structure. Validity of the method is demonstrated with numerical 
examples using noise-free and noise-contaminated structural 
responses. Both harmonic and impulsive forces are studied. The 
results show that the proposed approach can identify unknown 
dynamic forces within very limited iterations with high accuracy and 
shows its robustness even noise- polluted dynamic response 
measurements are utilized. 
 

Keywords—Dynamic Force Identification, Dynamic Responses, 
Sub-structure and Time Domain. 

I.INTRODUCTION 
CCURATE identification of dynamic forces can be very 
important to the structural design process. In addition, in 

order to identify the locations of the structural elements that 
suffered structural damage and to determine the amount and 
importance of the defects on the overall structural behavior; 
system identification techniques are usually used that require 
the information about the dynamic forces applied.  

The system identification techniques that have been used in 
the last three decades [1] have three components; input 
excitation, the system to be identified, and the output response 
information. The input excitation is the force that excites the 
system. The system is a mathematical model of the structure. 
The output is the response of a structural system due to the 
input excitation, reflecting the current state of the structure. 
Knowing the input excitation and the output response 
information, the system (third component) can be identified. 
Unfortunately, in most cases [2] and [3], it is impossible to 
insert force gauges into the force transfer path to measure 
those dynamic forces directly. Therefore, in order to get better 
damage detection it is required to identify the dynamic forces 
applied to the structures. 

There are many methods available in the literature for force 
identification; [4] proposed a polynomial to approximate the 
impact force history. The coefficients in the polynomial are 
directly used as unknown parameters. The relation between 
these unknown parameters and the strain responses at the 
specified positions is formulated through the finite element 
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method and the mode superposition method. After obtaining 
the impact force history, the impact position is identified by 
comparing the numerical strains and experimental ones 
directly. 

Reference [5] proposed an extension of the Inverse 
Structural Filter (ISF) force reconstruction algorithm that 
utilizes data from multiple time steps simultaneously to 
improve the accuracy and robustness of the ISF. The ISF 
algorithm uses a discrete time system model of a structure and 
the measured response to estimate the forces causing the 
response. 

Reference [6] proposed a genetic algorithm (GA)-based 
approach for impact load identification, which can identify the 
impact location and reconstruct the impact force history 
simultaneously. In this study, impact load is represented by a 
set of parameters, thus the impact load identification problem 
in both space (impact location) and time (impact force history) 
domains is transformed to a parameter identification problem. 
A forward model characterizes the dynamic response of the 
structure subject to a known impact force is incorporated in 
the identification procedure. By minimizing the difference 
between the analytical responses given by the forward model 
and the measured ones, GA adaptively identify the impact 
location and force history with its global search capability. 

Reference [7] proposed an iterative approach for both 
structural parameters and dynamic loading identification, 
referred to as weighted adaptive iterative least- squares 
estimation with incomplete measured excitations (WAILSE-
IME). The accuracy, convergence, and robustness of the 
proposed approach was demonstrated via numerical 
simulation on a six-story shear building model with noise-free 
and different levels of noise-polluted structural dynamic 
response measurements. 

In this paper, a time domain approach based on the least-
square method is used to identify the dynamic forces applied 
on two dimensional steel frames using a sub-structure finite 
element model. A short length of measurement from only 
three or four accelerometers is required for the identification 
process. The location of the input force is assumed to be 
known in the identification. Validity of the method is 
demonstrated with numerical examples using noise-free and 
noise-contaminated structural responses. 

II.MODELING SUB-STRUCTURE REQUIRED FOR IDENTIFYING 
FORCE APPLIED ON 2D FRAMES 

The sub-structure required for force identification should be 
selected in a way that the response measurements are available 
at all Degrees of Freedom (DOF) of the sub-structure and the 
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location of the dynamic excitation force is assumed to be 
known and included in the sub-structure. The selection of the 
sub-structure will start by determining the node where the 
unknown dynamic force is applied. Then it is required to 
determine the nodes and elements that are attached to that 
node. Accordingly, the governing dynamic equation for the 
sub-structure can be written as: 

 
(t)(t)(t)(t) fxMxCxK =++ sssss S     (1) 

 
where Ks, Cs and Ms are the global stiffness, damping and 
mass matrices for the sub-structure, respectively, and

sss x ,x, x  are vectors containing the dynamic responses 
in terms of displacement, velocity and acceleration at time t 
for the sub-structure, respectively, and f (t) is the unknown 
dynamic force vector applied on the structure. 

The global stiffness matrix for the sub-structure (Ks) can be 
assembled by using the method of superposition, the direct 
stiffness method, for the local stiffness matrices of all the 
elements in the sub-structure. The local stiffness matrix for 
two-dimensional beam element of uniform cross section is 
given by: 
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   (2) 

 
where Ei, Ii, and Li are the Young's modulus, moment of 
inertia, and length of the ith element, respectively. 

The damping matrix Cs is assumed to be Rayleigh-type 
damping and can be represented as: 

 

sss KMC βα +=         (3) 
 

whereα  is the mass-proportional damping coefficient andβ
is the stiffness-proportional damping coefficient.  

The global consistent mass matrix for the sub-structure 
(Ms) can be assembled by using the method of superposition 
for the local mass matrices of all the elements in the sub-
structure. The local consistent mass matrix for two-
dimensional beam element of uniform cross section is given 
by: 

 

i
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140
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where Li is the element length and mi is the mass per unit 
length. 

Accordingly, (1) can be rewritten in a matrix form as: 
 

[ ] { } { }GBA =*                    
(5) 

 
where [A] is a matrix of size (3 x n) × Ls; n is the total number 
of sample time points, Ls is the total number of elements and 
damping coefficients in the sub-structure and can be expressed 
as: 

 
[ ] ( ) ( ) ( ) ( ) ( ) ]ts

2ts
1tsts

2ts
1[ xQxQxQxQxQA … nes=  

( ) ])(ssts tnes xMxQ                 (6)   
 

where Q is the 6x6 matrix (2) excluding (EI/L)for each 
element in the sub-structure and nes is the total number of 
elements in the sub-structure. 

{B} vector in (5) is a vector of size Ls x 1 and can be 
shown to be: 
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{G} vector in (5) is a vector of size (3 x n) x 1: 
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where f is the unknown dynamic force need to be identified 
and TD is the total number of DOF in the sub-structure. 

The stiffness of each element (EI/L) in the two dimensional 
frame is assumed unknown and will be identified with the 
unknown dynamic force. A least-squares-based procedure 
proposed by [8] is used in this paper for the solution of 
unknown dynamic force f (t) by starting an iteration process 
by assuming that the unknown dynamic force to be zero at all 
n time sample points. It is observed through the numerical 
examples shown below that the method is not sensitive to this 
initial assumption, or the type and form of excitation. 

Using the least-squares-based procedure proposed by [8]; 
the solution of unknown system parameters {B} and unknown 
dynamic force f(t) are evaluated using the following 
expression: 
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