Search results for: weakly nonlinear analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9445

Search results for: weakly nonlinear analysis

9445 Some Properties of b-Weakly Compact Operators on Banach lattice

Authors: Na Cheng, Zi-li Chen

Abstract:

We investigate the sufficient condition under which each positive b-weakly compact operator is Dunford-Pettis. We also investigate the necessary condition on which each positive b-weakly compact operator is Dunford-Pettis. Necessary condition on which each positive b-weakly compact operator is weakly compact is also considered. We give the operator that is semi-compact, but it is not bweakly. We present a necessary and sufficient condition under which each positive semi-compact operator is b-weakly compact.

Keywords: b-weakly compact, Dunford-Pettis operator, M-weakly compact operator, L-weakly compact operator, semi-compact operator, weakly sequentially continuous lattice operations, order continuous norm, positive Schur property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
9444 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
9443 On Fuzzy Weakly-Closed Sets

Authors: J. Mahanta, P.K. Das

Abstract:

A new class of fuzzy closed sets, namely fuzzy weakly closed set in a fuzzy topological space is introduced and it is established that this class of fuzzy closed sets lies between fuzzy closed sets and fuzzy generalized closed sets. Alongwith the study of fundamental results of such closed sets, we define and characterize fuzzy weakly compact space and fuzzy weakly closed space.

Keywords: Fuzzy weakly-closed set, fuzzy weakly-closed space, fuzzy weakly-compactness, MSC: 54A40, 54D30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
9442 On Weakly Prime and Weakly Quasi-Prime Fuzzy Left Ideals in Ordered Semigroups

Authors: Jian Tang

Abstract:

In this paper, we first introduce the concepts of weakly prime and weakly quasi-prime fuzzy left ideals of an ordered semigroup S. Furthermore, we give some characterizations of weakly prime and weakly quasi-prime fuzzy left ideals of an ordered semigroup S by the ordered fuzzy points and fuzzy subsets of S.

Keywords: Ordered semigroup, ordered fuzzy point, weakly prime fuzzy left ideal, weakly quasi-prime fuzzy left ideal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
9441 Another Structure of Weakly Left C-wrpp Semigroups

Authors: Enxiao Yuan, Xiaomin Zhang

Abstract:

It is known that a left C-wrpp semigroup can be described as curler structure of a left band and a C-wrpp semigroup. In this paper, we introduce the class of weakly left C-wrpp semigroups which includes the class of weakly left C-rpp semigroups as a subclass. We shall particularly show that the spined product of a left C-wrpp semigroup and a right normal band is a weakly left C-wrpp semifroup. Some equivalent characterizations of weakly left C-wrpp semigroups are obtained. Our results extend that of left C-wrpp semigroups.

Keywords: Left C-wrpp semigroup, left quasi normal regular band, weakly left C-wrpp semigroup.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
9440 The Structure of Weakly Left C-wrpp Semigroups

Authors: Xiaomin Zhang

Abstract:

In this paper, the class of weakly left C-wrpp semigroups which includes the class of weakly left C-rpp semigroups as a subclass is introduced. To particularly show that the spined product of a left C-wrpp semigroup and a right normal band which is a weakly left C-wrpp semifroup by virtue of left C-full Ehremann cyber groups recently obtained by authors Li-Shum, results obtained by Tang and Du-Shum are extended and strengthened.

Keywords: Left C-semigroup, left C-wrpp semigroup, left quasinormal band, weakly left C-wrpp semigroup

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
9439 Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid

Authors: P. G. Siddheshwar, B. R. Revathi

Abstract:

The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.

Keywords: Dielectric liquid, Nusselt number, amplitude equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
9438 Primary subgroups and p-nilpotency of finite groups

Authors: Changwen Li

Abstract:

In this paper, we investigate the influence of Ssemipermutable and weakly S-supplemented subgroups on the pnilpotency of finite groups. Some recent results are generalized.

Keywords: S-semipermutable, weakly S-supplemented, pnilpotent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
9437 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim

Abstract:

In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: Direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
9436 A New Nonlinear PID Controller and its Parameter Design

Authors: Yongping Ren, Zongli Li, Fan Zhang

Abstract:

A new nonlinear PID controller and its stability analysis are presented in this paper. A nonlinear function is deduced from the similarities between the control effort and the electric-field effect of a capacitor. The conventional linear PID controller can be modified into a nonlinear one by this function. To analyze the stability of the nonlinear PID controlled system, an idea of energy equivalence is adapted to avoid the conservativeness which is usually arisen from some traditional theorems and Criterions. The energy equivalence is naturally related with the conceptions of Passivity and T-Passivity. As a result, an engineering guideline for the parameter design of the nonlinear PID controller is obtained. An inverted pendulum system is tested to verify the nonlinear PID control scheme.

Keywords: Nonlinear PID controller, stability, gain equivalence, dissipative, T-Passivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3174
9435 A New Verified Method for Solving Nonlinear Equations

Authors: Taher Lotfi , Parisa Bakhtiari , Katayoun Mahdiani , Mehdi Salimi

Abstract:

In this paper, verified extension of the Ostrowski method which calculates the enclosure solutions of a given nonlinear equation is introduced. Also, error analysis and convergence will be discussed. Some implemented examples with INTLAB are also included to illustrate the validity and applicability of the scheme.

Keywords: Iinterval analysis, nonlinear equations, Ostrowski method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
9434 Nonlinear Time-History Analysis of 3-Dimensional Semi-rigid Steel Frames

Authors: Phu-Cuong Nguyen, Seung-Eock Kim

Abstract:

This paper presents nonlinear elastic dynamic analysis of 3-D semi-rigid steel frames including geometric and connection nonlinearities. The geometric nonlinearity is considered by using stability functions and updating geometric stiffness matrix. The nonlinear behavior of the steel beam-to-column connection is considered by using a zero-length independent connection element comprising of six translational and rotational springs. The nonlinear dynamic equilibrium equations are solved by the Newmark numerical integration method. The nonlinear time-history analysis results are compared with those of previous studies and commercial SAP2000 software to verify the accuracy and efficiency of the proposed procedure.

Keywords: Geometric nonlinearity, nonlinear time-historyanalysis, semi-rigid connection, stability functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3953
9433 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
9432 On Graded Semiprime Submodules

Authors: Farkhonde Farzalipour, Peyman Ghiasvand

Abstract:

Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper we define graded semiprime submodules of a graded R-moduleM and we give a number of results concerning such submodules. Also, we extend some results of graded semiprime submoduls to graded weakly semiprime submodules.

Keywords: graded semiprime, graded weakly semiprime, graded secondary

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
9431 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
9430 On a New Nonlinear Sum-difference Inequality with Application

Authors: Kelong Zheng, Shouming Zhong

Abstract:

A new nonlinear sum-difference inequality in two variables which generalize some existing results and can be used as handy tools in the analysis of certain partial difference equation is discussed. An example to show boundedness of solutions of a difference value problem is also given.

Keywords: Sum-Difference inequality, Nonlinear, Boundedness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
9429 Nonlinear Analysis of Shear Wall Using Finite Element Model

Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam

Abstract:

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, large displacements, materially nonlinear, shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
9428 Consensus of Multi-Agent Systems under the Special Consensus Protocols

Authors: Konghe Xie

Abstract:

Two consensus problems are considered in this paper. One is the consensus of linear multi-agent systems with weakly connected directed communication topology. The other is the consensus of nonlinear multi-agent systems with strongly connected directed communication topology. For the first problem, a simplified consensus protocol is designed: Each child agent can only communicate with one of its neighbors. That is, the real communication topology is a directed spanning tree of the original communication topology and without any cycles. Then, the necessary and sufficient condition is put forward to the multi-agent systems can be reached consensus. It is worth noting that the given conditions do not need any eigenvalue of the corresponding Laplacian matrix of the original directed communication network. For the second problem, the feedback gain is designed in the nonlinear consensus protocol. Then, the sufficient condition is proposed such that the systems can be achieved consensus. Besides, the consensus interval is introduced and analyzed to solve the consensus problem. Finally, two numerical simulations are included to verify the theoretical analysis.

Keywords: Consensus, multi-agent systems, directed spanning tree, the Laplacian matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
9427 The Small Scale Effect on Nonlinear Vibration of Single Layer Graphene Sheets

Authors: E. Jomehzadeh, A.R. Saidi

Abstract:

In the present article, nonlinear vibration analysis of single layer graphene sheets is presented and the effect of small length scale is investigated. Using the Hamilton's principle, the three coupled nonlinear equations of motion are obtained based on the von Karman geometrical model and Eringen theory of nonlocal continuum. The solutions of Free nonlinear vibration, based on a one term mode shape, are found for both simply supported and clamped graphene sheets. A complete analysis of graphene sheets with movable as well as immovable in-plane conditions is also carried out. The results obtained herein are compared with those available in the literature for classical isotropic rectangular plates and excellent agreement is seen. Also, the nonlinear effects are presented as functions of geometric properties and small scale parameter.

Keywords: Small scale, Nonlinear vibration, Graphene sheet, Nonlocal continuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
9426 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations

Authors: Rafat Alshorman, Safwan Al-Shara', I. Obeidat

Abstract:

Most real world systems express themselves formally as a set of nonlinear algebraic equations. As applications grow, the size and complexity of these equations also increase. In this work, we highlight the key concepts in using the homotopy analysis method as a methodology used to construct efficient iteration formulas for nonlinear equations solving. The proposed method is experimentally characterized according to a set of determined parameters which affect the systems. The experimental results show the potential and limitations of the new method and imply directions for future work.

Keywords: Nonlinear Algebraic Equations, Iterative Methods, Homotopy Analysis Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
9425 On the outlier Detection in Nonlinear Regression

Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam

Abstract:

The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.

Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177
9424 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS

Authors: Xiangbin Zhu

Abstract:

Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.

Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
9423 Geometric and Material Nonlinear Analysis of Reinforced Concrete Structure Considering Soil-Structure Interaction

Authors: Mohamed M. El-Gendy, Ibrahim A. El-Arabi, Rafik W. Abdel-Missih, Omar A. Kandil

Abstract:

In the present research, a finite element model is presented to study the geometrical and material nonlinear behavior of reinforced concrete plane frames considering soil-structure interaction. The nonlinear behaviors of concrete and reinforcing steel are considered both in compression and tension up to failure. The model takes account also for the number, diameter, and distribution of rebar along every cross section. Soil behavior is taken into consideration using four different models; namely: linear-, nonlinear Winkler's model, and linear-, nonlinear continuum model. A computer program (NARC) is specially developed in order to perform the analysis. The results achieved by the present model show good agreement with both theoretical and experimental published literature. The nonlinear behavior of a rectangular frame resting on soft soil up to failure using the proposed model is introduced for demonstration.

Keywords: Nonlinear analysis, Geometric nonlinearity, Material nonlinearity, Reinforced concrete, Finite element method, Soilstructure interaction, Winkler's soil model, Continuum soil model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
9422 Dynamics and Control of a Chaotic Electromagnetic System

Authors: Shun-Chang Chang

Abstract:

In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simulation results. Finally, two cases of a chaotic electromagnetic system being effectively controlled by a reference signal or being synchronized to another nonlinear electromagnetic system are presented.

Keywords: bifurcation, Poincare map, Lyapunov exponent, chaotic motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
9421 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers

Authors: Irina Eglite, Andrei A. Kolyshkin

Abstract:

Method of multiple scales is used in the paper in order to derive an amplitude evolution equation for the most unstable mode from two-dimensional shallow water equations under the rigid-lid assumption. It is assumed that shallow mixing layer is slightly curved in the longitudinal direction and contains small particles. Dynamic interaction between carrier fluid and particles is neglected. It is shown that the evolution equation is the complex Ginzburg-Landau equation. Explicit formulas for the computation of the coefficients of the equation are obtained.

Keywords: Shallow water equations, mixing layer, weakly nonlinear analysis, Ginzburg-Landau equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
9420 Chaotic Oscillations of Diaphragm Supported by Nonlinear Springs with Hysteresis

Authors: M. Sasajima, T. Yamaguchi, Y. Koike, A. Hara

Abstract:

This paper describes vibration analysis using the finite element method for a small earphone, especially for the diaphragm shape with a low-rigidity. The viscoelastic diaphragm is supported by multiple nonlinear concentrated springs with linear hysteresis damping. The restoring forces of the nonlinear springs have cubic nonlinearity. The finite elements for the nonlinear springs with hysteresis are expressed and are connected to the diaphragm that is modeled by linear solid finite elements in consideration of a complex modulus of elasticity. Further, the discretized equations in physical coordinates are transformed into the nonlinear ordinary coupled equations using normal coordinates corresponding to the linear natural modes. We computed the nonlinear stationary and non-stationary responses due to the internal resonance between modes with large amplitude in the nonlinear springs and elastic modes in the diaphragm. The non-stationary motions are confirmed as the chaos due to the maximum Lyapunov exponents with a positive number. From the time histories of the deformation distribution in the chaotic vibration, we identified nonlinear modal couplings.

Keywords: Nonlinear Vibration, Finite Element Method, Chaos , Small Earphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
9419 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
9418 An Iterative Algorithm for KLDA Classifier

Authors: D.N. Zheng, J.X. Wang, Y.N. Zhao, Z.H. Yang

Abstract:

The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM.

Keywords: Linear discriminant analysis (LDA), kernel LDA (KLDA), conjugate gradient algorithm, nonlinear discriminant classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
9417 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
9416 Pushover Analysis of Short Structures

Authors: M.O. Makhmalbaf, M. GhanooniBagha, M.A. Tutunchian, M. Zabihi Samani

Abstract:

In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.

Keywords: Seismic Rehabilitation, Soil-Structure Interaction, Short Structure, Nonlinear Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950