Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1060713

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577

References:


[1] M. Van Dyke, An Album of Fluid Motion. New York: The Parabolic Press, 1982, Photograph No. 173.
[2] E. J. Wolansky, J. Imberger, and M.L. Heron, "Island wakes in shallow coastal waters," J. Geophys. Research, vol. 89, , pp. 10553-10559, 1984.
[3] R. G. Ingram, and V.H. Chu, "Flow around islands in Rupert Bay: An investigation of the bottom friction effect," J. Geophys. Research, vol. 92, pp. 14521-14533, 1987.
[4] G. H. Jirka, "Large scale flow structures and mixing processes in shallow flows," J. Hydr. Research, vol. 39 , pp. 567-573, 2001.
[5] S. A. Socolofsky, and G. H. Jirka, "Large scale flow structures and stability in shallow flows," J. Environ. Eng. Sci.., vol. 3 , pp. 451-462, 2004.
[6] D. Chen, and G. H. Jirka, "Experimental study of a plane turbulent in a shallow water layer," Fluid Dyn. Res.., vol. 16 , pp. 11-41, 1995.
[7] B. L. White, and H. M. Nepf, "Shear instability and coherent structures in shallow flow adjacent to a porous layer," J. Fluid Mech.., vol. 593 , pp. 1-32, 2007.
[8] M. E. Negretti, S. A. Socolofsky, A. C. Rummel, and G. H. Jirka, "Stabilization of cylinder wakes in shallow water flow by means of roughness elements: an experimental study," Exp. Fluids., vol. 38 , pp. 403-414, 2005.
[9] D. Chen, and G. H. Jirka, "Absolute and convective instabilities of plane turbulent wakes in a shallow water layer," J. Fluid Mech.., vol. 338 , pp. 157-172, 1997.
[10] A. A. Kolyshkin, and M. S. Ghidaoui, "Stability analysis of shallow wake flows," J. Fluid Mech.., vol. 494 , pp. 355-37, 2003.
[11] M. S. Ghidaoui, A. A. Kolyshkin, J. H. Liang, F. C. Chan, Q. Li, and K. Xu, "Linear and nonlinear analysis of shallow wake flows," J. Fluid Mech.., vol. 548 , pp. 309-340, 2006.
[12] A. A. Kolyshkin, and S. Nazarovs, "Influence of averaging coefficients on weakly nonlinear stability of shallow flows," IASME Transactions., vol. 2, no. 1, pp. 86-91, 2005.
[13] K. Stewartson, and J. T. Stuart, "A non-linear instability theory for a wave system in plane Poiseuille flow", J. Fluid Mech., vol. 48, pp. 529- 545, 1971.
[14] F. Feddersen, "Weakly nonlinear shear waves", J. Fluid Mech., vol. 371, pp. 71-91, 1998.
[15] L. S. Aranson, and L. Kramer, "The world of the complex Ginzburg- Landau equation", Reviews in Modern Phys., v. 74, pp. 99 - 143, 2002.
[16] M. C. Cross, and P. C. Honenberg, "Pattern formation outside the equilibrium", Reviews in Modern Phys., v. 65, pp. 851 - 1112, 1993.
[17] T. Leveke, and M. Provansal, "The flow behind rings: bluff body wakes without end effects", J. Fluid Mech., vol. 288, pp. 265-310, 1995.
[18] P. Le Gal, J. F. Ravoux, E. Floriani, and T. Dudok de Wit, "Recovering coefficients of the complex Ginzburg-Landau equation from experimental spatio-temporal data: two examples from hydrodynamics", Physica D., vol. 174, pp. 114-133, 2003.
[19] P. J. Blennerhassett, "On the generation of waves by wind", Proc. of the Royal Soc. London. Ser. A: Mathematical and Physical Sciences., vol. 298, pp. 451-494, 1980.
[20] M. S. Ghidaoui, and A. A. Kolyshkin, "A quasi-steady approach to the instability of time-dependent flows in pipes", J. Fluid Mech., vol. 465, pp. 301-330, 2002.
[21] A. A. Kolyshkin, R. Vaillancourt, and I. Volodko, "Weakly nonlinear analysis of rapidly decelerated channel flow", IASME Transactions., vol. 2, no. 7, pp. 1157-1165, 2005.
[22] F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, "Stability and vortex structures of quasi-two-dimensional shear flows", Sov. Phys. Uspekhi., vol. 33, pp. 495-520, 1990.
[23] V. L. Streeter, E. B. Wylie, and K. W. Bedford, Fluid Mechanics (ninth edition), New York: McGraw Hill., 1998.
[24] P. A. Monkiewitz, "The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers", Phys. Fluids., vol. 31, pp. 999-1006, 1988.