Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
On Graded Semiprime Submodules
Authors: Farkhonde Farzalipour, Peyman Ghiasvand
Abstract:
Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper we define graded semiprime submodules of a graded R-moduleM and we give a number of results concerning such submodules. Also, we extend some results of graded semiprime submoduls to graded weakly semiprime submodules.Keywords: graded semiprime, graded weakly semiprime, graded secondary
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061202
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445References:
[1] D. D. Anderson and E. Smith, Weakly prime ideals, Hoston J. of Math. 29 (2003), 831-840.
[2] S. Ebrahimi Atani, On graded weakly prime ideals, Turk. J. of Math. 30 (2006), 351-358.
[3] S. Ebrahimi Atani, On graded weakly prime submodules, Int. Math. Forum. 1 (2006), 61-66.
[4] S. Ebrahimi Atani and F.Farzalipour, On weakly primary ideals, Georgian Math. Journal. 3 (2003), 705-709.
[5] S. Ebrahimi Atani and F.Farzalipour, On weakly prime submodules, Tamkang J. of Math. 38 (2007), 247-252.
[6] S. Ebrahimi Atani and F. Farzalipour , Notes On the graded prime submodules, Int. Math. Forum. 1 (2006), 1871-1880.
[7] Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378.
[8] F. Farzalipour and P. Ghiasvand, Quasi Multiplication Modules, Thai J. of Math. 1 (2009), 361-366.
[9] P. Ghiasvand and F. Farzalipour, Some Properties of Graded Multiplication Modules, Far East J. Math. Sci. 34 (2009), 341-359.
[10] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
[11] M. Refaei and K. Alzobi, On graded primary ideals, Turk. J. Math. 28 (2004), 217-229.