**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31014

##### The Small Scale Effect on Nonlinear Vibration of Single Layer Graphene Sheets

**Authors:**
E. Jomehzadeh,
A.R. Saidi

**Abstract:**

**Keywords:**
Nonlinear Vibration,
small scale,
Graphene sheet,
Nonlocal continuum

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1081215

**References:**

[1] H. Chu, G. Herrmann, "Influence of large amplitudes on free flexural vibrations of rectangular elastic plates", Journal of Applied Mechanics, 23, 1956, pp. 532-540.

[2] N. Yamaki, "Influence of large amplitudes on flexural vibrations of elastic plates", ZAMM, 41, 1961, pp. 501-540.

[3] G. Singh, K. Raju, G.V. Rao, "Non-linear vibrations of simply supported rectangular cross-ply plates", Journal of Sound and Vibration, 142, 1990, pp. 213-226.

[4] A.Y.T. Leung, S.G. Mao, "A symplectic Galerkin method for non-linear vibration of beams and plates", Journal of Sound and Vibration, 183, 1995, pp. 475-491.

[5] M. Amabili, "Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments", Computers and Structures, 82, 2004, pp. 2587-2605.

[6] M. Haterbouch, R. Benamar, "Geometrically nonlinear free vibrations of simply supported isotropic thin circular plates", Journal of Sound and Vibration, 280, 2005, pp. 903-924.

[7] J. Woo, S.A. Meguid, L.S. Ong, "Nonlinear free vibration behavior of functionally graded plates", Journal of Sound and Vibration, 289, 2006, pp. 595-611

[8] M. Amabili, S. Farhadi, "Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates", Journal of Sound and Vibration, 320, 2009, pp. 649-667.

[9] C.W. Lima, L.H. He, "Size-dependent nonlinear response of thin elastic films with nano-scale thickness", International Journal of Mechanical Sciences, 46, 2004, pp. 1715-1726.

[10] S. Kitipornchai, X.Q. He, K.M. Liew, "Continuum model for the vibration of multilayered graphene sheets", Physical Review B, 72, 075443, 2005, 6 pages.

[11] Y.M. Fu, J.W. Hong, X.Q. Wang, "Analysis of nonlinear vibration for embedded carbon nanotubes", Journal of Sound and Vibration, 296, 2006, pp. 746-756

[12] S.C. Pradhan, J.K. Phadikar. "Nonlocal elasticity theory for vibration of nanoplates", Journal of Sound and Vibration, 325, 2009, pp. 206-223.

[13] L.L. Ke, Y. Xiang, J. Yang, S. Kitipornchai, "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Computational Materials Science, 47, 2009, pp.409-417.

[14] Y.X. Dong, C.W. LIM, "Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method", Science in China Series E: Technological Sciences, 52, 2009, pp. 617-621.

[15] T. Murmu, S.C. Pradhan, "Thermo-mechanical vibration of a singlewalled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Computational Materials Science, 46, 2009, pp. 854-859.

[16] J. Yang, L.L. Ke, S. Kitipornchai, "Nonlinear free vibration of singlewalled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42, 2010, pp. 1727-1735.

[17] M.A. Hawwa, H.M. Al-Qahtani, "Nonlinear oscillations of a doublewalled carbon nanotube", Computational Materials Science, 48, 2010, pp. 140-143.

[18] C. Eringen, "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", Journal of Applied Physics, 54, 1983, pp. 4703-4710.

[19] I.S. Raju, G.V. Rao, K. Raju, "Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beam and thin plates", Journal of Sound and Vibration, 49, 1976, pp. 415-422.

[20] A. Beléndez, D.I. Méndez, E. Fernandez, S. Marini, I. Pascual, "An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method", Physics Letters A, 373, 2009, pp. 2805-2809.

[21] J.J. Stoker, "Nonlinear vibrations in Mechanical and Electrical Systems", John Wiley & Sons, Inc., New York, 1950.