The Structure of Weakly Left C-wrpp Semigroups

Xiaomin Zhang

Abstract—In this paper, the class of weakly left C-wrpp semigroups which includes the class of weakly left C-rpp semigroups as a subclass is introduced. To particularly show that the spined product of a left C-wrpp semigroup and a right normal band which is a weakly left C-wrpp semifroup by virtue of left C-full Ehremann cyber groups recently obtained by authors Li-Shum, results obtained by Tang and Du-Shum are extended and strengthened.

Keywords—Left C-semigroup,left C-wrpp semigroup,left quasinormal band,weakly left C-wrpp semigroup

I. INTRODUCTION

THROUGHOUT this paper, we adopt the notation and terminologies given by Howei[1] and Li-Shum[2].

By modifying Green's relations on rpp semigroups, Tang [3]has introduced a new set of Green's relations on a semigroup *S* and by using these new Green's relations, he was able to give a description for a wider class of C-rpp semigroups, namely, the class of C-wrpp semigroups. Tang[3] considered a Green-like right congruence relation L^{**} on a semigroup *S* for $a, b \in S$ $aL^{**}b$ if and only $axR ay \Leftrightarrow bxR by$ for all $x, y \in S^1$. Moreover, Tang pointed out in [3] that a semigroup *S* is a wrpp semigroup if and only if each L^{**} -class of *S* contains at least one idempotent.

Recall that a wrpp semigroup S is a C-wrpp semigroup if the idempotents of S are central. It is well known that a semig-

roup *S* is a C-wrpp semigroup if and only if *S* is a strong semilattice of left-R cancellative monoids(see[3]).Because a Clifford semigroup can be expressed as a strong semilattice of groups and a C-rpp semigroup can be expressed as a strong semilattice of left cancellative monoids(see[4]),we see immediately that the concept of C-wrpp semigroups is a common generalization of Clifford semigroups and C-rpp semigroups.

For wrpp semigroups, Du-Shum [5] first introduced the concept of left C-wrpp semigroups, that is,a left C-wrpp semigroup whose satisfy the following conditions: (i)for all $e \in E(L_a^{**}), a = ae$ where $E(L_a^{**})$ is the set of idempotents in L_a^{**} ; (ii)for all $a \in S$, there exists a unique idempotent a^+

satisfying $aL^{**}a^+$ and $a = a^+a$; (iii) for all $a \in S, aS \subseteq L^{**}(a)$, where $L^{**}(a)$ is the smallest left **-ideal of S generated by a. For left C-wrpp semigroups, Du-Shum[5] gave a method of construction.

Guo [6] has investigated weakly left C-semigroups, and he pointed out that a semigroup S is a weakly left C-semigroup if and only if S is a completely regular semigroup with idempotents set E(S) forming a left quasi-normal band.

In this paper, we first define the concept of weakly left Cwrpp semigroups. A structure theorem for weakly C-wrpp semigroups is obtained, and we prove this theorem in view of the structure of left C-full Ehresmann cyber groups recently obtained by Li and Shum[2].

II. PRELIMINARIES

We first recall that some known results used in the sequel. The following results due to [2] and [7].

Let *S* be a semigroup, and *U* a subset of the set E(S)) which is the set of all idempotents of *S*. For all $a \in S$, let $U_a^{l} = \{u \in U \mid ua = a\}, U_a^{r} = \{u \in U \mid au = a\}, U_a = U_a^{l} \cap U_a^{r} = \{u \in U \mid ua = a = au\}$. According to Lawson[8] and He[7], we have the following relations on *S*:

$$\begin{split} \tilde{\mathbf{L}}^{U} &= \{(a,b) \in S \times S \mid U_{a}^{r} = U_{b}^{r}\}, \tilde{\mathbf{R}}^{U} = \{(a,b) \in S \times S \mid U_{a}^{l} = U_{b}^{l}\}, \\ \tilde{\mathbf{H}}^{U} &= \tilde{\mathbf{L}}^{U} \cap \tilde{\mathbf{R}}^{U}, \ \tilde{\mathbf{Q}}^{U} = \{(a,b) \in S \times S \mid U_{a} = U_{b}\}. \end{split}$$

It is easy to verify that above relations are equivalent relations. For all $a \in S$, a \tilde{L}^{U} -class, a \tilde{R}^{U} -class, a \tilde{H}^{U} -class and a \tilde{Q}^{U} -class of *S* containing *a*, denoted by $\tilde{L}_{a}^{U}, \tilde{R}_{a}^{U}, \tilde{H}_{a}^{U}$ and \tilde{Q}_{a}^{U} , respectively. For the sake of convenience, we denote the semigroup *S* with a projective set *U* which is a subset of all idempotents E(S) by S(U).

Consider the special semigroup S(U) with U = E(S). Then the equivalent relations on S = S(U), say $\tilde{L}^{E(S)}$, $\tilde{R}^{E(S)}$, $\tilde{H}^{E(S)}$ and $\tilde{Q}^{E(S)}$, respectively. For brevity, we write \tilde{L} , \tilde{R} , \tilde{H} and \tilde{Q} , respectively.

Definition 2.1 A semigroup S(U) is called a U-semi-lpp semigroup if each \mathbb{R}^{U} -class of S contains at least one element in U, that is, $\tilde{R}^{U}_{a} \cap U \neq \emptyset$ for all $a \in S$. A semigroup S(U)is called a U-semi-rpp semigroup if each \tilde{L}^{U} -class of Scontains at least one element in U, that is, $\tilde{L}^{U}_{a} \cap U \neq \emptyset$ for all

X. M. Zhang is with the Department of Mathematics, Linyi Normal University, Shandong 276005 P.R.China (corresponding phone: 86-539-2068718; fax: 86-539-2058033; e-mail: lygxxm@ tom..tom).

 $a \in S$. A semigroup S(U) is called a U-semiabundant semigroup if both each \tilde{L}^{U} -class and each \tilde{R}^{U} -class of S contain at least one element in U, that is, $\tilde{L}_{a}^{U} \cap U \neq \emptyset$ and $\tilde{R}_{a}^{U} \cap U \neq \emptyset$ for all $a \in S$. A semigroup S(U) is called U-abundant semigroup if each \tilde{Q}^{U} -class of S contains at least one element in U, that is, $\tilde{Q}_{a}^{U} \cap U \neq \emptyset$. Denoted the unique element in U by a_{U}° if $|\tilde{Q}_{a}^{U} \cap U|=1$, In special case U = E(S), a E(S)-abundant semigroup is called a full abundant semigroup, in this case, a_{E}° is usually written as a° .

Lawson[8] point out that \tilde{L}^{U} is not necessarily a riht congruence and \tilde{R}^{U} is not necessarily a left congruence on S(U). We have

Definition 2.2 A semigroup S(U) is called satisfying U right(left) congruence condition if $\tilde{L}^{U} \in \text{RC}(S)$ ($\tilde{R}^{U} \in \text{LC}(S)$, a semigroup S(U) is called satisfying U - congruence condition if $\tilde{L}^{U} \in \text{RC}(S)$ and $\tilde{R}^{U} \in \text{LC}(S)$, where RC(S) is a lattice that all right congruences form, and LC(S) is a lattice that all left congruences form.

Definition 2.3 A U -semiabundant semigroup S(U) is called an Ehresmann semigroup if S(U) satisfies U -congruence condition and U is a subsemilattice of U. In particular, an Ehresmann semigroup S(U) is called a C-Ehresmann semigroup if U lies in center of S(U).

Definition 2.4 A U -abundant semigroup S(U) is called an orthodox U -abundant semigroup if U is a subsemigroup of S(U) and $(ab)_U^\circ D(U)a_U^\circ b_U^\circ$ for all $a, b \in S$, where $D=L \vee R$ is a usual Green's D relation.

Definition 2.5 An orthodox U-abundant semigroup is called a left C-Ehresmann semigroup if $uS \subseteq Su$ holds for all $u \in U$.

Definition 2.6 An orthodox U -abundant semigroup is called a left C-Ehresmann cyber group if the identity uxuy = uxy holds for all $u \in U, x, y \in S$.

When U = E(S), we call an orthodox E(S) -abundant semigroup(left C-Ehresmann semigroup, left C-Ehresmann cyber group) an orthodox full abundant semigroup(left C-full Ehresmann semigroup, left C-full Ehresmann cyber group).

Recall that the direct product $I \times T$ of a left zero band I and a monoid T is called a left monoid, and the direct product $I \times T$ of a left zero band I and a unipotent semigroup T is called a left unipotent semigroup. It is well known that a right normal band Λ can be expressed as a strong semilattice of right zero bands, that is, $\Lambda = [Y; \Lambda_{\alpha}; \varphi_{\alpha,\beta}]$. By using the above results,

He[7] have proved that the following results:

Lemma 2.7 The following statements are equivalent for a semigroup S:

(i) S(U) is a left C-Ehresmann semigroup for some $U \subseteq E(S)$;

(ii) S is a semilattice Y of left monoids $S_{\alpha} = I_{\alpha} \times T_{\alpha}$ and

 $U = \{(i, 1_{\alpha}) \mid i \in I_{\alpha}\} \text{ is a subsemigroup of } S \text{ where } \alpha \in Y, 1_{\alpha} \text{ is the identical element in } T_{\alpha}.$

By virtue of above lemma, a left C-Ehresmann semigroup $S(U) = [Y; S_{\alpha} = I_{\alpha} \times T_{\alpha}]$ may be defined as a semilattice of left monoids $S_{\alpha} = I_{\alpha} \times T_{\alpha}$, and the set $U = \{(i, 1_{\alpha}) | i \in I_{\alpha}, \alpha \in Y\}$ is also a subsemigroup of S(U).

The followinglemma have been recently proved by Li-Shum [2].

Lemma 2.8 Let *S* be a semigroup. Then S(U) is a left C-Ehresmann cyber group for some $U \subseteq E(S)$ if only and if *S* is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-Ehresmann semigroup $S_1 = [Y; I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to the semilattice *Y*.

By using Lemma 2.7, we can easily follow that *S* is a left C-full Ehresmann semigroup if and only if *S* is a semilattice of left unipotent semigroups. Hence we can denote a left C-full Ehresmann semigroup *S* by $S = [Y; S_{\alpha} = I_{\alpha} \times T_{\alpha}]$ (see[7]).

By using Lemma 2.8, we can easily imply that *S* is a left C-full Ehresmann cyber group if and only if *S* is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-full Ehresmann semigroup $S_1 = [Y; I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to the semilattice *Y* (see [2]).

III. THE STRUCTURE OF WEAKLY LEFT C-WRPP SEMIGROUPS

In this section, the concept of weakly left C-wrpp semigroups is introduced. We shall prove that a structure theorem for weakly left C-wrpp semigroups. First, we introduce the cocept of weakly left C-wrpp semigroups.

Definition 3.1 A semigroup S is called a weakly left C-wrpp semigroup, if S is a strong wrpp semigroup and satisfy identity exey = exy for all $e \in E(S)$ and $x, y \in S$.

According to [5]. we know that the left C-wrpp semigroup is a special case of the weakly left C-wrpp semigroup.

Lemma 3.2 Let *S* be a strongly wrpp semigroup. Then *S* is a full abundant semigroup with $a^{\circ} = a^{+}$, for all $a \in S$.

Proof. Let S be a strongly wrpp. To prove S is a full abundant semigroup, we only need to prove $a^\circ = a^+$ for all $a \in S$. Let $I_a = \{e \mid ea = ae = a\}$. For all $e \in I_a$, since

 $\begin{aligned} (a^+e)^+ &a = (a^+e)^+ (a^+e)a = (a^+e)a = a(a^+e)(a^+e)^+ = a(a^+e)^+, \\ \text{and } a = ae\mathsf{L}^{**}a^+e\mathsf{L}^{**}(a^+e)^+. \text{ So we have } (a^+e)^+ \in L_a^{**} \cap I_a. \text{ This implies that } (a^+e)^+ = a^+. \text{ Thus, we have } a^+ea^+ = a^+e \text{ and} \\ \text{whence } a^+e \in E(S). \text{ Consequently, we obtain that } a^+e = (a^+e)^+ = a^+. \\ \text{On the other hand, we can easily verify that } ea^+ \in L_a^{**} \cap I_a. \\ \text{Therefore, } ea^+ = a^+, \text{ and so } e \in I_{a^+}. \text{ Thus, it follows that } I_a \subseteq I_{a^+}. \\ \text{Clearly, } I_{a^+} \subseteq I_a \text{ and whence } I_a = I_{a^+}. \text{ This means that} (a,a^+) \in \tilde{\mathsf{Q}}. \\ \text{Therefore, } S \text{ is a full abundant semigroup with } a^\circ = a^+. \text{ The proof is completed.} \end{aligned}$

Lemma 3.3 Let S be a weakly left C-wrpp semigroup. Then

S is a left C-full Ehresmann cyber group.

Proof. Let *S* be a weakly left C-wrpp semigroup. Then we have exey = exy for all $e \in E(S), x, y \in S$, and hence E(S) is a left quasi-normal band. According to Lemma 3.2, we know that *S* is a full abundant semigroup with $a^{\circ} = a^{+}$. To prove that *S* is a left C-full Ehresmann cyber group, it suffices to prove S(E(S)) satisfying $(ab)^{\circ} D(E(S))a^{\circ}b^{\circ}$ for all $a, b \in S$. Now, Let $a, b \in S$. For all $x, y \in S^{1}$, we can infer that

 $(ab)^+ x \mathbf{R} (ab)^+ y \Leftrightarrow abx \mathbf{R} aby (\mathbf{R} \text{ is a left congruence})$

 $\Leftrightarrow a^+ba^+b^+x \mathbb{R} a^+ba^+b^+y (E(S) \text{ is a left quasi-normal band})$

$$\Leftrightarrow aba^+b^+xR aba^+b^+y(R \text{ is a left congruence})$$

 $\Leftrightarrow (ab)^+ a^+ b^+ x \mathbf{R} (ab)^+ a^+ b^+ y.$

This means that $(ab)^+ L^{**}(ab)^+ a^+ b^+$. Since $(ab)^+, (ab)^+ a^+ b^+ \in E(S)$, we can verify that $(ab)^+ L(ab)^+ a^+ b^+$, and whence $(ab)^+ =$

 $(ab)^+a^+b^+$. For all $x, y \in S$, we have

 $(ab)^+a^+x \mathbf{R} (ab)^+a^+y \Leftrightarrow aba^+x \mathbf{R} aba^+y$

 $\Leftrightarrow a^+ba^+x \mathbf{R} a^+ba^+y$

 $\Leftrightarrow b^+a^+ba^+xR \ b^+a^+ba^+y$ (R is a left congruence)

 $\Leftrightarrow (ba)^+ b^+ a^+ ba^+ x \mathbb{R} \ (ba)^+ b^+ a^+ ba^+ y \ (\mathbb{R} \text{ is a left congruence})$ $\Leftrightarrow ba^+ x \mathbb{R} \ ba^+ y \Leftrightarrow b^+ a^+ x \mathbb{R} \ b^+ a^+ y$

 $\Leftrightarrow a^+b^+a^+x \mathbf{R} \ a^+b^+a^+y$ (**R** is a left congruence)

 $\Leftrightarrow (ab)^+ a^+ b^+ a^+ x \mathbb{R} (ab)^+ a^+ b^+ a^+ y \ (\mathbb{R} \text{ is a left congruence})$ $\Leftrightarrow (ab)^+ a^+ x \mathbb{R} (ab)^+ a^+ y.$

So we have $(ab)^+a^+L^{**}a^+b^+a^+$, and hence $(ab)^\circ = (ab)^+R$ $(ab)^+a^+La^+b^+a^+Ra^+b^+ = a^\circ b^\circ$. The proof is completed.

We now characterize the weakly left C-wrpp semigroups.

Theorem 3.4 A semigroup S is a weakly left C-wrpp semigroup if and only if S is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-wrpp semigroup $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to semilattice Y.

Proof. Necessity. Let *S* be a weakly left C-wrpp semigroup. Then by Lemma 3.3, *S* is a left C-full Ehresmann cyber group with $a^{\circ} = a^{+}$ for all $a \in S$. According to Lemma 2.8, we know that *S* can express as $S_1 \times_Y \Lambda$, where $S_1 = [Y; S_{\alpha} = I_{\alpha} \times T_{\alpha}]$ is a left C-full Ehresmann semigroup and $\Lambda = [Y; \Lambda_{\alpha}; \varphi_{\alpha,\beta}]$ is a right normal band. We only need to show that S_1 is a strongly wrpp semigroup and T_{α} is a left-R cancellative monoid.

For all $(i, a) \in S_{\alpha}, (j, b) \in S_{\beta}$ and $(k, c) \in S_{\gamma}$, we have

$$\begin{split} &(i,a)(j,b)\mathbb{R}\;(i,a)(k,c) \Rightarrow (i,a)(i,1_{\alpha})(j,b)\mathbb{R}\;(i,a)(i,1_{\alpha})(k,c) \\ \Rightarrow &((i,a),\lambda)((i,1_{\alpha})(j,b),\mu)\mathbb{R}\;((i,a),\lambda)((i,1_{\alpha})(k,c),\mu)\;(\;\lambda \in \Lambda_{\alpha},\\ &\mu \in \Lambda_{\alpha\beta} = \Lambda_{\alpha\gamma}) \end{split}$$

 $\begin{aligned} &\Rightarrow ((i,1_{\alpha}),\lambda)((i,1_{\alpha})(j,b),\mu) \mathbb{R} \ ((i,1_{\alpha}),\lambda)((i,1_{\alpha})(k,c),\mu) \ (\lambda \in \Lambda_{a}, \\ &\mu \in \Lambda_{\alpha\beta} = \Lambda_{\alpha\gamma}) \Rightarrow (i,1_{\alpha})(j,b) \mathbb{R} \ (i,1_{\alpha})(k,c) \end{aligned}$

since $((i,a), \lambda)^+ = ((i,a), \lambda)^\circ = ((i,1_\alpha), \lambda)$, where l_α is the identity in $T_\alpha (\alpha \in Y)$. Similarly, we can deduce that (i,a)(j,b)

$$\begin{split} & \mathsf{R}\ (i,a) \Rightarrow (i,\mathbf{1}_{\alpha})(j,b)\mathsf{R}\ (i,\mathbf{1}_{\alpha}) \text{. Thus}\ (i,a)\mathsf{L}^{**}(i,\mathbf{1}_{\alpha}) \text{. By}\ (i,\mathbf{1}_{\alpha}) \\ & \text{being the unique element in } \ L^{**}_{a} \cap I_{(i,a)}, \text{ we observe that } S_{1} \text{ is a} \\ & \text{strongly wrpp semigroup with}\ (i,a)^{+} = (i,\mathbf{1}_{\alpha}) \text{. If } a, b, c \in T_{\alpha} \text{ such } \\ & \text{that } ab\mathsf{R}\ ac \text{, then } (i,a)(i,b)\mathsf{R}\ (i,a)(i,c) \text{ for all } i \in I_{\alpha} \text{. By } (i,a) \\ & \mathsf{L}^{**}(i,\mathbf{1}_{\alpha}), \text{ we have } (i,\mathbf{1}_{\alpha})(i,b)\mathsf{R}\ (i,\mathbf{1}_{\alpha})(i,c), \text{ and whence } b\mathsf{R}\ c, \\ & \text{this means that } T_{\alpha} \text{ is a left-}\mathsf{R} \text{ cancellative monoid.} \end{split}$$

Sufficiency. Assume that $S = S_1 \times_Y \Lambda$, where $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ is a left C-wrpp semigroup and $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ is a right normal band, then $(i, \alpha)^+ = (i, 1_\alpha)$ for $(i, \alpha) \in S_\alpha$, where 1_α is the identity in T_α . We easily verify that S is a strongly wrpp semigroup with $((i, \alpha), \lambda)^+ = ((i, 1_\alpha), \lambda)$, and whence we can also check that S is a weakly left C-wrpp semigroup.

Weakly left C-semigroups were first investigated by Guo[6] in 1996, and weakly left C-rpp semigroups were investigated by Cao [9] in 2000. It is clear that weakly left C-semigroups and weakly left C-rpp semigroups are special weakly left C-wrpp. As applications of Theorem 3.4, we have the following corollaries:

Corollary 3.5 A semigroup *S* is a weakly left C-rpp semigroup if and only if *S* is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-rpp semigroup $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to semilattice *Y*.

Corollary 3.6 A semigroup *S* is a weakly left C- semigroup if and only if *S* is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C- semigroup $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to semilattice *Y*.

REFERENCES

- [1] J. M. Howie, An introduction to semigroup theory, London: London Acaemic Press ,1976.
- [2] G.Li, and K. P.Shum, "On left C-Ehresmann cyber group,"Advances in Algebra and Analysis, Vol 1, no. 1, pp. 13-25, 2006.
- [3] X.D. Tang, "On a theorem of C-wrpp semigroups," Comm. Algebra, vol.25,no.5,pp. 1499-1504,1997.
- [4] J. B.Fountain, "Right pp monoids with central idempotents," Semigroup Forum, vol.13,pp.229-237,1977.
- [5] L.Du, and K. P.Shum, "On left C-wrpp semigroups," Semigroup Forum, vol.67, no.3,pp.373-387,Aug.,2003.
- [6] Y. Q. Guo, "On weakly left C-semigroups," Chinese Sci. Bull., vol.40,no.19,pp.1744-1747,1996.
- [7] Y.He, "Some studies on regular semigroups and generalized regular semigroups," Ph D. dissertation, Zhongshan University, China, 2002.
- [8] M.V.Lawson, "Rees matrix semigroups," Proc.Edinb.Math.Soc.,vol.33, pp. 23-27,1990.
- [9] Y. L.Cao, "The structure of weakly left C-rpp semigroups," J.Zibo University, vol.2, no.4, pp.3-8, Dec., 2000.
- [10] P.Y. Zhu, Y.Q.Guo, and K. P.Shum, "Structure and characterization of left Clifford semigroups," Sci. China, Ser. vol. 35A, pp.791-805, Oct.,1991.
- [11] Y. Q.Guo, K. P.Shum, and P.Y.Zhu, "The structure of left C-rpp semigroups," Semigroup Forum, vol.50,no.1,pp.9-23,Dec.,1995.
- [12] X.M.Ren, and K. P.Shum, "Structure theorem for right pp semigroups with left central idempotents, "Disscuss.Math.Gen.Algebra Appl., vol.20,no.3,pp.63-75, Sept.,2000.