Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30528
Primary subgroups and p-nilpotency of finite groups

Authors: Changwen Li

Abstract:

In this paper, we investigate the influence of Ssemipermutable and weakly S-supplemented subgroups on the pnilpotency of finite groups. Some recent results are generalized.

Keywords: S-semipermutable, weakly S-supplemented, pnilpotent

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1070651

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845

References:


[1] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-NewYork, 1967.
[2] O. H. Kegel, Sylow Gruppen und subnormalteiler endlicher Gruppen, Math. Z, 78 (1962), 205-221.
[3] Q. Zhang and L. Wang, The infuence of S-semipermutable subgroups on the structure of a finite group, Acta Math. Sinica, 48 (2005), 81-88.
[4] L. Wang and Y. Wang, On S-semipermutable maximal and minimal subgroups of Sylow p-groups of finite groups, Comm. Algebra, 34 (2006), 143-149.
[5] A. N. Skiba, On weakly s-permutable subgroups of finite groups. J. Algebra, 315 (2007), 192-209.
[6] Y. Wang, Finite groups with some subgroups of Sylow subgroups csupplemented, J. Algebra, 224 (2000), 467-478.
[7] K. Doerk and T. Hawkes. Finite Soluble Groups, de Gruyter, Berlin-New York, 1992.
[8] Y. Li, Y. Wang and H. Wei, On p-nilpotency of finite groups with some subgroups ¤Ç-quasinormally embedded, Acta. Math. Hungar, 108 (2005), 283-298.
[9] F. Gross, Conjugacy of odd order Hall subgroups, Bull London Math Soc, 19 (1987), 311-319.
[10] H. Wei and Y. Wang, On CAS-subgroups of finite groups, Israel J. Math, 159 (2007), 175-188.
[11] X. Guo and K. P. Shum, On p-nilpotency of finite group with some subgroup c-supplemented, Algebra Colloq, 10 (2003), 259-266.