
 

 

  
Abstract—This paper deals with nonlinear vibration analysis 

using finite element method for frame structures consisting of elastic 

and viscoelastic damping layers supported by multiple nonlinear 

concentrated springs with hysteresis damping. The frame is supported 

by four nonlinear concentrated springs near the four corners. The 

restoring forces of the springs have cubic non-linearity and linear 

component of the nonlinear springs has complex quantity to represent 

linear hysteresis damping. The damping layer of the frame structures 

has complex modulus of elasticity. Further, the discretized equations in 

physical coordinate are transformed into the nonlinear ordinary 

coupled differential equations using normal coordinate corresponding 

to linear natural modes. Comparing shares of strain energy of the 

elastic frame, the damping layer and the springs, we evaluate the 

influences of the damping couplings on the linear and nonlinear impact 

responses. We also investigate influences of damping changed by 

stiffness of the elastic frame on the nonlinear coupling in the damped 

impact responses. 

 

Keywords—Dynamic response, Nonlinear impact response, Finite 

Element analysis, Numerical analysis. 

I. INTRODUCTION 

PRINGS are often used not only for heavy structures but 

also for lightweight structures such as parts in automobiles 

to insulate them from external vibrations and shocks. However, 

in many cases, the stiffness of a lightweight structure is not 

sufficiently high for the structure to be considered rigid. Thus, 

in dynamic analysis, it is necessary to deal with these structures 

as elastic bodies. If the structures comprise resins, they should 

be treated as viscoelastic bodies. 

Many researchers have studied for the nonlinear vibrations 

of concentrated masses with springs [1]. The authors previously 

proposed a fast numerical method to compute the nonlinear 

vibrations in an elastic/viscoelastic block with a nonlinear 

spring [2]. 

To reduce vibrations, viecoelastic damping materials are 

often laminated on the metal structures. Damping 

characteristics (e.g. modal loss factors) of these laminated 

panels are affected by not only properties of the viscoelastic 
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materials but also stiffness of the metal panels. To calculate the 

modal loss factors, which corresponds to modal damping when 

the structure are deformed as eigenmodes at resonant 

frequencies, complex eigenvalue analysis are often used. To 

compute the modal loss factors using FEM under linear 

problem, Johnson proposed Modal Strain Energy Method (i.e. 

MSE Method) [3], [4]. Using this method, the modal loss 

factors can be computed using material loss factor for each 

element and the ratio of modal strain energy for each element to 

total modal strain energy. This method is very useful to 

investigate damping mechanism in the metal structures with 

viscoelastic layers. However, there are few reports to treat 

nonlinear vibration problem of the metal structures with 

viscoelastic damping layers supported by nonlinear spring. 

This paper describes vibration analysis using FEM for elastic 

structures with viscoelastic layers connected with nonlinear 

springs with hysteresis. We think this is a simplified model of a 

sub-frame supported by rubber mounts in automotive 

suspensions. The restoring force of the spring is expressed as 

power series of its deformation. A complex spring constant is 

introduced for the linear component of the restoring force. The 

finite elements for the nonlinear spring are expressed and they 

are attached to the elastic/ viscoelastic structures, which are 

modeled as solid finite elements with a complex modulus of 

elasticity. We obtain the nonlinear discrete equations of motion 

for the whole structure. To get modal loss factors, we introduce 

small parameters concerning damping to complex eigenvalue 

problem of the equations under small deformation. And we 

obtain asymptotic equations from the zero and first orders. 

Then, the approximate modal loss factors are obtained like 

MSE. Further, by introducing normal coordinate corresponding 

to eigenmodes. The nonlinear discrete equations in physical 

coordinates are transformed into nonlinear ordinary coupled 

equations. The transformed equations are rapidly computed to 

obtain the nonlinear transient responses with a fairly small dof. 
As a numerical example of this proposed FEM, we deal with 

elastic frames with damping layers supported by multiple 

nonlinear springs with hysteresis. Using the proposed method, 

we show new phenomena including nonlinear coupling 

motions among nonlinear springs with hysteresis and elastic 

frames and viscoelastic layers. We clarify influences of 

amplitude of the impact force on nonlinear transient responses. 

II. NUMERICAL MODEL 

We use a simplified simulation model for frame structures 

supported by springs on four corners of the frame as shown in 
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Fig. 1. We set the origin at one corner as shown in Fig. 1 in the

x y plane on the upper surface of the frame. There exist four 

nonlinear springs in the z direction on each four corners. 

Further, on these corners, linear springs are set both in the x and 

y directions. The frame structures are composed of a steel frame 

and a viscoelastic damping layer. Fig. 2 shows three models 

which we investigate. The detail geometry of the models are 

shown in this figure. “Elastic Frame Model” as shown in Fig. 2 

has only a steel frame. This has no viscoelastic damping layer. 

“Elastic Frame model with Damping Layer” has a steel frame 

with a damping layer. Thickness of the frame is 10mm and the 

thickness of the damping layer is 20mm. “High Stiffness 

Elastic Frame model with Damping Layer” has also a steel 

frame and a damping layer. But, thickness of the steel frame is 

20mm which is twice of the thickness for “Elastic Frame model 

with Damping Layer”. 
The concentrated nonlinear springs in the z direction have 

cubic nonlinearity in the relation between their displacement 

mzu and their restoring force 
mzR  as shown in Fig. 3. Linear 

hysteresis damping is introduced into the restoring force of the 

nonlinear springs. Namely, linear components of the spring 

constants have complex quantity as )1(11 smzm jηγγ += . 
sη  shows 

the loss factor of the springs. Further, there also exist linear 

concentrated springs in x and y directions at the corners. 

These linear springs have the same complex quantity as the 

linear component of the nonlinear springs. As shown in Fig. 1, 

the excitation point is ( x , y , z )=(575,30,0) on the upper 

surface of the steel frame. We evaluate impact responses of this 

simulation model. The evaluation point is ( x , y ) = (575, 30) in 

Fig. 2 on the bottom surface of the frame with the damping 

layer.  

III. NUMERICAL METHOD 

We demonstrate a numerical method to calculate nonlinear 

responses by considering coupled damping properties for the 

elastic structures having viscoelastic damping layers connected 

to the nonlinear concentrated springs with linear hysteresis 

damping.  

A. Discretized Equation for Nonlinear Concentrated Springs 

with Linear Hysteresis 

First, we show discretized equations for the nonlinear 

concentrated springs with linear hysteresis [2]. We assumed 

that the nonlinear concentrated springs with viscoelasticity 

have the principal elastic axes in the z  direction as illustrated 

in Fig. 1. We introduce the displacement as 
mzu , ( ,...3,2,1=m ) 

in the z  direction at the nodal points 
mα , ( ,...3,2,1=m ) where 

the nonlinear springs are attached with the steel frame. The 

nodal force at the point 
mα  is expressed using the power series 

of
mzu . When cubic nonlinearity is assumed, the restoring force 

mzR of the spring can be expressed as: 

 
3

3

2

21 mzmzmzmzmzmzmz uuuR γγγ ++=
                 

(1) 

 

 

Fig. 1 Simulation model 

 

 

Fig. 2 Detail geometry of elastic frames with damping layer supported 

by nonlinear / linear springs 

 

 

Fig. 3 Restoring force of nonlinear springs 

 

Next, linear hysteresis damping is introduced as 

)1(11 smzm jηγγ += . j  is the imaginary unit. 
mz1γ  is the real part of 

m1γ , while 
sη  is the material loss factor of the spring. The 

relation in (1) can be rewritten in the matrix form as: 

 

{ } [ ]{ } { }msmmm duR += 1γ                             
(2) 

 

[ ]















=

mz

m

1

1

00

000

000

γ
γ ,{ } { }T

mzmzmzmzm uud
3

3

2

2,0,0 γγ +=   (3)
 

 

where { } { }T

mzmymxm RRRR ,,= , 0== mymx RR , is the nodal force 
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vector at the node
mα . { } { }T

mzmymxsm uuuu ,,= is the nodal 

displacement vector at the node 
mα . [ ]m1γ is the complex 

stiffness matrix involving the linear term of the restoring force. 

{ }md  is the vector containing the nonlinear terms of the 

restoring force. 

B. Discrete Equation for Elastic Frame and Viscoelastic 

Damping Material 

Forvibration of the steel frame and the viscoelastic damping 

material, we used discretized equations written in the following 

expressions from (4) and (5). They correspond to conventional 

linear finite element model in consideration of linear hysteresis 

damping. Stress-strain relation and strain-displacement relation 

are expressed as: 

 

[ ] { } [ ] { } { }
eseseseses fuKuM =+&&
                     

(4) 

 

esK ][  and 
esM ][  are the element stiffness matrix and element 

mass matrix, respectively. 
esf }{ and 

esu }{ are the nodal force 

vector and nodal displacement vector in an element e . 

By replacing complex modulus of elasticity with real 

modulus of elasticity, the viscoelastic damping layer can be 

modeled using finite elements. Consequently, the element 

stiffness matrix 
esK ][  in (4) becomes to have complex 

quantities in (5): 
 

[ ] [ ] ( )seees jKK η+= 1sR                    
(5) 

 

esRK ][ is the real part of element stiffness matrix for the 

viscoelastic damping material. 
seη is the material loss factor 

corresponding to each element . 

For the elastic and the viscoelastic materials, isoparametric 

hexahedral elements with the non-conforming modes [5] are 

chosen. For the viscoelastic damping material, the storage 

modulus of elasticity is 8.00×10
8
(N/m

2
), the mass density is 

1.45×10
3
(kg/m

3
) and the material loss factor 

seη  is 0.333. 

C. Discrete Equations for Global System between the 

Nonlinear / Linear Springs and Damped Elastic Frame 

The restoring force in (2) is added to the nodal force at 

the connected nodes
mα  between the nonlinear concentrated 

springs in the z direction and the elastic frame. Further, the 

linear springs in the x and y directions are also attached. The 

next equation can be obtained for the global system [2]: 

 

[ ]{ } [ ]{ } { } { }fduKuM =++ ˆ&& , 
∑

=

=
1

}ˆ{}ˆ{
m

mdd

      

(6) 

 

where }{ f , ][K , ][M , and }{u are the external force vector, 

complex stiffness matrix, mass matrix, and displacement vector 

in the global system, respectively. }ˆ{ md is modified from }{ md

to have a vector size identical to dof of the global system. 

D. Computation of Modal Loss Factors 

Next, we explain a computation method to obtain modal 

damping (i.e. modal loss factor) for the concentrated springs 

and the solid bodies (i.e. the elastic frame with the viscoelastic 

damping layer) in the global system. We neglect the nonlinear 

term under small deformation and the external force because of 

resonance conditions in (6). Next, it is assumed that }{u can be 

expressed as tjeu ωφ}{}{ = . ω and t represent the angular 

frequency and the time, respectively. Consequently, we have 

homogeneous equation of (6), which corresponds to complex 

eigenvalue problem. 

 

}0{})){1(])[1()()1(]([
max

1e

)(

R

)(2)(

R =++−+∑
=

e
i

ee

i

tot

i

ee jMjjK φχηωη (7)

 
 

In this equation, 
eη is the elements' material loss factors which 

includes 
sη and

seη . 2)( )( iω  is the real part of complex 

eigenvalue. Superscript (i)  stands for the i-the igenmode. {φ( i)} 

is the complex eigenvector.ηtot

( i) is the modal loss factor. Next, 

we introduce the following 
seβ using the maximum value  

among the elements' material loss factors 
eη , (e=1,2,3,...emax). 

 

1,/ max ≤= seese βηηβ
                          

(8) 

 

If we assume 1max <<η , solutions (i.e. complex eigenvalues 

and complex eigenvectors) of (7) are expanded [4], [7] using a 

small parameter 
maxηµ j= : 

 

 ,...}{}{}{}{ 2

)(2

1

)(

0

)()( +++= iiii φµφµφφ
           

(9) 

 

,...)()()()(
2)(

4

42)(

2

22)(

0

2)( +++= iiii ωµωµωω
         

(10) 

 

,...)(

7

7)(

5

5)(

3

3)(

1

)( ++++= iiiii

totj ηµηµηµµηη
       

(11) 

 

Under conditions of 1≤seβ  and 1max <<η , we can obtain 

1max <<seβη . Thus, can be regarded as small parameters 

like µ . In (9),(10) and (11), {φ(i)}0
, {φ ( i)}1

, {φ(i)}2
 and 

(ω0

(i))2 , (ω2

( i))2 , (ω4

( i))2  and η1

(i)
, η3

( i) ,
)(

5

iη  have real 

quantities. By substitution of these expressions from (9) to (11) 

into (7), we obtain approximate equations using 0µ and 1µ
orders. Finally, the following equation can be derived by 

arranging the approximate equations: 

 

( ) ( )( )∑
=

=
max

1

e

e

i

see

i

tot Sηη
                               

(12)
 

 

From (12), modal loss factor ( )i
totη  can be calculated using 

material loss factors 
eη  of each element  and share )(i

seS  of 

strain energy of each element to total strain energy. This 

e

{ }mR

maxη

seµβ

,...

,... ,...

e
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equation has the same form of MSE Method [3], [4] proposed 

by Johnson. This method helps us to decrease computational 

time for large-scale finite element models for the damped 

structure. And in (12), 
( )i

seeSη corresponds to contribution of 

each element e to i-the modal damping. Using this, we can 

analyze coupled damping properties in the elastic frame with 

viscoelastic damping layer supported by complex springs 

having linear hysteresis.  

E. Conversion to Nonlinear Equations in Normal Coordinate 

from Equation in Physical Coordinate  

When we compute impact responses using (6) in physical 

coordinates directly, it takes considerable computational time. 

We adopt a numerical procedure to diminish the degree of 

freedom for the discretized equations of motion [2], [6]. 

We assume that the linear natural modes of vibration }{ )(iφ  

can be approximated to 
0

)( }{ iφ . Further, the nodal displacement 

vector can be expressed by introducing normal coordinates 
ib

~
 

corresponding to the linear natural modes 
0

)( }{ iφ as:  

  

i

i

i

i nbu /}
~

{
~

}{
1

0

)(∑
=

= φ
                           

(13) 

 

where 

i

ii

i

i nm /}
~

{}
~

{}{ 0

)(

0

)(

0

)( φφφ ==  ,
ii mn /1= , 

0

)(

0

)( }]{[}{ ii

i Mm φφ T= , 1}
~

]{[}
~

{ 0

)(

0

)( =ii M φφ T  

 

By substitution of (13) into (6), the following nonlinear 

ordinary simultaneous equations with regard to normal 

coordinates 
ib

~
can be obtained. 

 

( ) ∑∑+++
j k

kjijki

i

i

ii

toti bbDbbb
~~~~~~ 2)()()( ωωη &&& ∑∑∑ =+

j k l

ilkjijkl PbbbE
~~~~~

 

(14) 

 
T

32221110

)( },
~

,
~

,
~

,
~

,
~

,
~

,
~

{}
~

{ Lxiziyixiziyixi

i φφφφφφφφ =
, 

}{}
~

{
~ T

0

)( FnP i

ii φ= , ∑
=

=
4

1

2

~~~
))/((

~

m

kmyjmyimykjimyijk nnnD φφφγ  

lmy

m

kmyjmyimylkjimyijkl nnnnE φφφφγ
~~~~

))/((
~ 4

1

3∑
=

=  

 

We can save computational time because (14) has a much 

smaller degree of freedom than (6).
iimzφ

~ is the z-component of 

the eigenmode 
0

)( }
~

{ iφ at the m-th connected node  between 

the frame and the nonlinear springs. The damping term in (14) 

can be derived in an identical form to (12). 

IV. NUMERICAL RESULTS AND DISCUSSION 

A. Results of and Modal Loss Factors and Eigenmodes and 

Resonant Frequencies 

Figs. 4 and 5 show eigenmodes 
0

)( }
~

{ iφ , resonant frequencies 

)2/()(

0 πω i  and modal loss factors )(

tot

iη  for modes 1 to 14 and 

modes 15 to 21, respectively.  

In these figures, arrows stand for directions of rigid motions 

in eigenmodes especially.  

We give the material loss factors of the steel frames as 

e fη η= =0.001. And that of the viscoelastic damping layer is 

e dη η= =0.333. Those of the springs are
e sη η= =0.100.  

In these figures, results for the three models are shown. 

Results of “Elastic Frame Model” in Fig. 2 are the left 

deformation patterns in Figs. 1 and 2. Results of “Elastic Frame 

Model with Damping Layer” in Fig. 2 are the central 

deformation patterns. Results of “High Stiffness Elastic Frame 

Model with Damping Layer” in Fig. 2 are the right deformation 

patterns. 

In this paper, material loss factor sη
=0.100 of the springs are 

larger than fη
=0.001 of the steel frame. If eigenmodes include 

no elastic deformation of the steel frame, the modal loss factors 

are close to sη
=0.100. Thus, modal loss factor totη

=0.996 of 

mode 4 (i.e. rigid mode of the frame) is larger than totη
=0.0014 

for mode 13 (i.e. elastic mode of the steel frame). Because the 

deformation of the springs is dominant in mode 4, the share of 

the strain energy in (12) in the springs is large. This leads to 

high modal loss factor. On the other hand, the deformation of 

the springs is small in modes from 10 to 20 due to the elastic 

mode of the steel frame without damping layer. This leads to 

low modal loss factor. 

For mode 2 including both rotation of the steel frame about 

the x axis and elastic deformation of the frame, the modal loss 

factor 
totη =0.0564 is middle value between those for modes 4 

and 13. These phenomena are generated due to dependence of 

eigenmodes on the share of the strain energy in (12). 

Modal loss factor totη  of mode 10 for “Elastic Frame Model 

with Damping Layer” is larger than that of mode 10 for “Elastic 

frame Model”. Because the viscoelastic damping material has 

high material loss factor 
dη =0.333, modal loss factors 

totη for 

modes from 10 to 20 including elastic deformation of the frame 

increase. 

If we assume to remove the springs, we set that modal loss 

factors 
totη of the laminate (i.e. 10mm thickness of the steel 

frame plus 10mm thickness of the damping layer) are less than 

the material loss factor 
sη =0.100 of the springs. Therefore 

totη
=0.997 of mode 4 including larger deformations in the springs 

is larger than 
totη =0.0467 of mode13 including larger elastic 

deformation in the steel frame. Modal loss factor 
totη =0.0564 

of mode 2 shows a middle value between them (i.e. modes 4 

and 13) because this mode contains both elastic deformation in 

mα
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the steel frame and the deformation in springs when rotating 

motions of the frame occur. 

 

 
 

Fig. 4 Vibration modes for mode 1 to mode 14 

 

Fig. 5 Vibration modes for mode 15 to mode 20 

 

Because thickness of the steel frame for this model is 20mm, 

which is double for “Elastic Frame Model with Damping 

Layer”, this frame has higher stiffness. However, due to this 

high rigidity, damping decreases for modes from 10 to 20 

having large deformation in the frame. For instance, modal loss 

factor 
totη =0.0166 of this model for mode 16 is less than 

totη
=0.0511 of “Elastic Frame Model with Damping Layer” for 

mode 15. According to (12), not only material loss factors but 

also share of strain energy is required to increase modal loss 

factors. Therefore, to increase modal loss factors of the frame 

with the damping layer, high share of the strain energy in the 

viscoelastic damping layer is required. Actually, we can find 

lower share of strain energy of the steel frame for “Elastic 

Frame Model with Damping Layer” as shown in Fig. 7 than that 

for “High Stiffness Elastic Frame Model with Damping Layer” 

as shown in Fig. 6. Using the proposed method, this 

phenomenon can be also explained roughly by Oberst 

expression [8] from theoretical analysis using complex flexural 

rigidity for bending vibrations of a beam having a 

non-constraint type viscoelastic damping layer. Damping 

becomes low when neutral plane of the frame with viscoelastic 

layer is apart from the damping layer. 

As we mentioned before, this model has the thick frame. Due 

to high stiffness of the frame, elastic deformations of the steel  

frame become very small in modes 1 to 6, which we can almost 

regard as rigid motions for the frame. This leads that modal loss 

factors for these modes are close to the value of the material 

loss factor 
sη =0.100 of the springs. 
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Fig. 6 Strain energy distribution in steel frame for “High Stiffness 

Elastic Frame Model with Damping Layer”(Mode 16) 

 

 

Fig. 7 Strain energy distribution in steel frame for “Elastic Frame 

Model with Damping Layer”(Mode 15) 

 

 

Fig. 8 Time history of impact force 

 

 

Fig. 9 Fourier spectrum of impact response for “Elastic Frame Model” 

under small input (
maxf = 0.98 N ) 

 

 

Fig. 10 Fourier spectrum of impact response for “Elastic Frame Model” 

under large input (
maxf = 9.8×105 N ) 

 

 

Fig. 11 Fourier spectrum of impact response for “Elastic Frame Model 

with Damping Layer” under small input (
maxf = 0.98 N ) 

 

 

Fig. 12 Fourier spectrum of impact response for “Elastic Frame Model 

with Damping Layer” under large input (
maxf =9.8×105 N ) 

A. Results of Impact Responses 

By changing the maximum amplitude 
maxf of the impact as 

shown in Fig. 8 under a constant pulse width 0.001 (s), transient 

time histories are computed. In Fig. 8, the ordinate Fd 

represents force amplitude, while the abscissa τ shows time. 

And we evaluate displacement at the evaluation point on the 

frame as shown in Fig. 1. 

In Figs. 9 and 10, the ordinate represents amplitude of 

frequency response function )( spfA , while the abscissa shows 

Fourier frequency 
spf . As for (m) in Fig. 9, m denotes m-th 

vibration mode. For (m, n) in Fig. 10, m denotes m-th vibration 

mode and n denotes types of the frequency response function. 

For instance, n=3 shows super-harmonic component of the 

third order and n=1/2 represents sub- harmonic component of 

the 1/2 order.0 (dB) represents the amplitude of the spectrum 

equals 1(mm) for )( spfA  in these figures. Fig. 9 represents the 

frequency response function of a time history under the small 

impact force 
maxf = 0.98(N). And Fig. 10 shows the frequency 

response function of the time history under the extraordinary 

large impact force 
maxf =9.8× 

Under the small input force 
maxf =0.98 (N) in Fig. 9, the 

peaks of the modes 1,2,5,7,9, 10,11,13,15,16,17 and 20 appear 

in the frequency response function mainly. Because excitation 

force in the z direction is acted on and the direction of 

observation is z, these modes include large amplitudes in the z 

direction. 
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Due to small modal loss factors including large elastic 

deformations in the steel frame and small deformation in the 

springs with linear hysteresis, the peaks for modes from 10 to 

20 show sharp and have large amplitudes. 

Under the extraordinary large input force 
maxf =9.8×10

5
(N) 

in Fig. 10, there exist many peaks (i.e. not only fundamental 

components but also super harmonic, sub-harmonic 

components and internal resonances) for modes including large 

deformation in the nonlinear springs in the frequency response 

function. 

We investigate linear and nonlinear transient responses for 

“Elastic Frame Model with Damping Layer”. Fig. 11 represents 

the frequency response function of a time history under the 

small impact force 
maxf = 0.98(N). Fig. 12 shows the frequency 

response function under the extraordinary large impact force 

maxf =9.8×10
5
(N).  

Under the small input force 
maxf = 0.98 (N) in Fig. 11, the 

peaks of the modes 1,2,5,7,9, 10,11,13,15,16,17 and 20 appear 

in the frequency response function like Fig. 9 for the model 

without damping layer. However, the amplitudes decrease for 

the peaks for modes from 10 to 20 including large deformations 

in the frame with damping layer. On the other hand, in 

comparison with Fig. 9, there exist small changes in the peaks 

for modes 3, 4 and 6 including large deformation in the springs 

and small deformations in the frame.  

Under the extraordinary large input force 
maxf = 9.8×10

5
(N) 

in Fig. 12, in comparison with Fig. 10 for the model without 

damping layer, number of the nonlinear peaks decrease. 

Especially, due to higher damping, this phenomenon is 

outstanding for modes from 10 to 20 including large 

deformation in the frame with the damping layer. Therefore, the 

damping layer enables us to diminish the nonlinear coupling in 

the transient response. 

Next, we investigate the transient responses for “High 

Stiffness Elastic Frame Model with Damping Layer” and 

clarify influences of the stiffness of the steel frame on linear / 

nonlinear transient responses. As we stated previously in 

previous section A, modal loss factors of this model decrease 

due to high stiffness of the steel frame for modes 10 to 20 

containing large deformations in the frame with the damping 

layer. Fig. 13 represents the frequency response function of a 

time history under the small impact force 
maxf = 0.98(N). Fig. 

14 shows the frequency response function of a time history 

under the extraordinary large impact force 
maxf =9.8×10

5
(N).  

Under the small input force 
maxf = 0.98 (N) in Fig. 13, the 

peaks of the modes 1,2,4,6,7, 9,11,13,16 and 18 appear in the 

frequency response function like Fig. 11 for “Elastic Frame 

Model with Damping Layer”. Nevertheless, the amplitudes 

increase for the peaks for modes from 10 to 20 including large 

deformations in the frame with damping layer. This 

phenomenon is caused by low modal loss factors of these 

modes due to high stiffness of the steel frame as we explained 

in previous Section A. 

Under the extraordinary large input force 
maxf = 9.8×10

5
(N) 

in Fig. 14, in comparison with Fig. 12 for the model without 

damping layer, number of the nonlinear peaks increase. 

Especially, due to lower damping oriented from high stiffness 

of the steel frame, this phenomenon is notable for modes from 

10 to 20 including large deformation in the frame with the 

damping layer. Therefore, if we increase the thickness of the 

steel frame, damping of the frame with the damping layer 

diminishes and this leads to magnify the nonlinear coupling in 

the transient response, consequently. 
 

 

Fig. 13 Fourier spectrum of impact response for “High Stiffness 

Elastic Frame Model with Damping Layer” under small input (
maxf = 

0.98 N) 

 

 

Fig. 14 Fourier spectrum of impact response for “High Stiffness 

Elastic Frame Model with Damping Layer” under large input (
maxf

=9.8×105 N) 

V. CONCLUSION 

This paper describes vibration analysis using FEM for elastic 

frames with viscoelastic layers connected with multiple 

nonlinear springs with hysteresis. The restoring force of the 

spring is expressed as power series of its elongation. A complex 

spring constant is introduced for the linear component of the 

restoring force. The finite elements for the nonlinear spring are 

expressed and they are attached to the elastic/ viscoelastic 

structures, which are modeled as solid finite elements with a 

complex modulus of elasticity. To get modal loss factors, we 

introduce small parameters concerning damping to complex 

eigenvalue problem of the equations under small deformation. 

And we obtain asymptotic equations from the zero and first 

orders. Then, the approximate modal loss factors are obtained 

like MSE. Further, by introducing normal coordinate 

corresponding to eigenmodes. The nonlinear discrete equations 
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in physical coordinates are transformed into nonlinear ordinary 

coupled equations.  

We show phenomena including nonlinear coupled damped 

motions between nonlinear springs with hysteresis and elastic 

frames and viscoelastic layers by increasing impact force. 

Under a very large impact force as a severe condition, there 

exist complicated nonlinear couplings in Fourier spectrum. Due 

to high damping oriented from viscoelastic damping layer, 

nonlinear peaks are diminished. When we increase thickness of 

the steel frame, damping of the frame with the viscoelastic layer 

decreases. This causes the spectrum of the transient response 

includes more peaks due to nonlinear couplings. 
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