**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**2176

# Search results for: Nonlinear Algebraic Equations

##### 2176 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations

**Authors:**
Rafat Alshorman,
Safwan Al-Shara',
I. Obeidat

**Abstract:**

**Keywords:**
Nonlinear Algebraic Equations,
Iterative Methods,
Homotopy
Analysis Method.

##### 2175 Analytical Based Truncation Principle of Higher-Order Solution for a x1/3 Force Nonlinear Oscillator

**Authors:**
Md. Alal Hosen

**Abstract:**

In this paper, a modified harmonic balance method based an analytical technique has been developed to determine higher-order approximate periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to x^{1/3}. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. In this article, different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. We find a modified harmonic balance method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the x^{1/3} force nonlinear oscillator but it is also useful for many other nonlinear problems.

**Keywords:**
Approximate solutions,
Harmonic balance method,
Nonlinear oscillator,
Perturbation.

##### 2174 Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations

**Authors:**
Mohana Sundaram Muthuvalu,
Jumat Sulaiman

**Abstract:**

In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.

**Keywords:**
Complexity reduction approach,
Composite trapezoidal
scheme,
Jacobi method,
Linear Fredholm integral equations

##### 2173 Unconventional Calculus Spreadsheet Functions

**Authors:**
Chahid K. Ghaddar

**Abstract:**

**Keywords:**
Calculus functions,
nonlinear systems,
differential algebraic equations,
solvers,
spreadsheet.

##### 2172 A Modification on Newton's Method for Solving Systems of Nonlinear Equations

**Authors:**
Jafar Biazar,
Behzad Ghanbari

**Abstract:**

In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.

**Keywords:**
System of nonlinear equations.

##### 2171 An Efficient Computational Algorithm for Solving the Nonlinear Lane-Emden Type Equations

**Authors:**
Gholamreza Hojjati,
Kourosh Parand

**Abstract:**

In this paper we propose a class of second derivative multistep methods for solving some well-known classes of Lane- Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. These methods, which have good stability and accuracy properties, are useful in deal with stiff ODEs. We show superiority of these methods by applying them on the some famous Lane-Emden type equations.

**Keywords:**
Lane-Emden type equations,
nonlinear ODE,
stiff problems,
multistep methods,
astrophysics.

##### 2170 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

**Authors:**
Leila Motamed-Jahromi,
Mohsen Hatami,
Alireza Keshavarz

**Abstract:**

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As_{2}S_{3} chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

**Keywords:**
Nonlinear optics,
propagation equation,
plasmonic waveguide.

##### 2169 On Algebraic Structure of Improved Gauss-Seidel Iteration

**Authors:**
O. M. Bamigbola,
A. A. Ibrahim

**Abstract:**

Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss- Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss- Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.

**Keywords:**
Linear system of equations,
Gauss-Seidel iteration,
algebraic structure,
convergence.

##### 2168 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations

**Authors:**
Javad Abdalkhani

**Abstract:**

**Keywords:**
Nonlinear transformation,
Abel Volterra Equations,
Mathematica

##### 2167 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

**Authors:**
Saeed Sarabadan,
Mehran Nikarya,
Kouroah Parand

**Abstract:**

**Keywords:**
MHD Falkner-Skan,
nonlinear ODE,
spectral
collocation method,
Bessel functions,
skin friction,
velocity.

##### 2166 Some Third Order Methods for Solving Systems of Nonlinear Equations

**Authors:**
Janak Raj Sharma,
Rajni Sharma

**Abstract:**

**Keywords:**
Nonlinear equations and systems,
Newton's method,
fixed point iteration,
order of convergence.

##### 2165 A First Course in Numerical Methods with “Mathematica“

**Authors:**
Andrei A. Kolyshkin

**Abstract:**

**Keywords:**
Numerical methods,
"Mathematica",
e-learning.

##### 2164 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

**Authors:**
jianhua Hou,
Changqing Yang,
and Beibo Qin

**Abstract:**

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

**Keywords:**
Hybrid functions,
Fredholm integral equation,
Blockpulse,
Chebyshev polynomials,
product operational matrix.

##### 2163 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

**Authors:**
A. Giniatoulline

**Abstract:**

**Keywords:**
Galerkin method,
Navier-Stokes equations,
nonlinear partial differential equations,
Sobolev spaces,
stratified fluid.

##### 2162 A New Verified Method for Solving Nonlinear Equations

**Authors:**
Taher Lotfi ,
Parisa Bakhtiari ,
Katayoun Mahdiani ,
Mehdi Salimi

**Abstract:**

In this paper, verified extension of the Ostrowski method which calculates the enclosure solutions of a given nonlinear equation is introduced. Also, error analysis and convergence will be discussed. Some implemented examples with INTLAB are also included to illustrate the validity and applicability of the scheme.

**Keywords:**
Iinterval analysis,
nonlinear equations,
Ostrowski
method.

##### 2161 Lagrangian Method for Solving Unsteady Gas Equation

**Authors:**
Amir Taghavi,
kourosh Parand,
Hosein Fani

**Abstract:**

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

**Keywords:**
Unsteady gas equation,
Generalized Laguerre functions,
Lagrangian method,
Nonlinear ODE.

##### 2160 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations

**Authors:**
Ehsan Mahdavi

**Abstract:**

In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.

**Keywords:**
Exp-function method,
Rosenau Kawahara equation,
Rosenau Korteweg-de Vries equation,
nonlinear partial differential
equation.

##### 2159 On Symmetries and Exact Solutions of Einstein Vacuum Equations for Axially Symmetric Gravitational Fields

**Authors:**
Nisha Goyal,
R.K. Gupta

**Abstract:**

**Keywords:**
Gravitational fields,
Lie Classical method,
Exact solutions.

##### 2158 Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

**Authors:**
Sachin Bhalekar,
Varsha Daftardar-Gejji

**Abstract:**

**Keywords:**
Caputo fractional derivative,
System of nonlinear functional
equations,
Revised new iterative method.

##### 2157 On the System of Nonlinear Rational Difference Equations

**Authors:**
Qianhong Zhang,
Wenzhuan Zhang

**Abstract:**

This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.

**Keywords:**
Difference equations,
stability,
unstable,
global
asymptotic behavior.

##### 2156 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

**Authors:**
Gulgassyl Nugmanova,
Zhanat Zhunussova,
Kuralay Yesmakhanova,
Galya Mamyrbekova,
Ratbay Myrzakulov

**Abstract:**

**Keywords:**
Spin systems,
equivalent counterparts,
integrable
reductions,
self-consistent potentials.

##### 2155 A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

**Authors:**
Joe Imae,
Kenjiro Shinagawa,
Tomoaki Kobayashi,
Guisheng Zhai

**Abstract:**

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

**Keywords:**
Nonlinear Control,
Optimal Control,
Hamilton-Jacobi Equation,
Virtual-Time

##### 2154 Oscillation Theorems for Second-order Nonlinear Neutral Dynamic Equations with Variable Delays and Damping

**Authors:**
Da-Xue Chen,
Guang-Hui Liu

**Abstract:**

In this paper, we study the oscillation of a class of second-order nonlinear neutral damped variable delay dynamic equations on time scales. By using a generalized Riccati transformation technique, we obtain some sufficient conditions for the oscillation of the equations. The results of this paper improve and extend some known results. We also illustrate our main results with some examples.

**Keywords:**
Oscillation theorem,
second-order nonlinear neutral dynamic equation,
variable delay,
damping,
Riccati transformation.

##### 2153 A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations

**Authors:**
Jinfeng Wang,
Yang Liu,
Hong Li

**Abstract:**

In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.

**Keywords:**
Hyperbolic wave equation,
Nonlinear,
He’s variational
iteration method,
Transformations

##### 2152 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

**Authors:**
Kourosh Parand,
Zahra Delafkar,
Fatemeh Baharifard

**Abstract:**

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

**Keywords:**
Tau method,
semi-infinite,
nonlinear ODE,
rational Chebyshev,
porous media.

##### 2151 A New Iterative Method for Solving Nonlinear Equations

**Authors:**
Ibrahim Abu-Alshaikh

**Abstract:**

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

**Keywords:**
Iterative method,
root-finding method,
sine-polynomial equations,
nonlinear equations.

##### 2150 A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems

**Authors:**
B. I. Yun

**Abstract:**

**Keywords:**
Axisymmetric elasticity,
boundary element method,
dual-reciprocity method,
Laplace transform.

##### 2149 Chaotic Oscillations of Diaphragm Supported by Nonlinear Springs with Hysteresis

**Authors:**
M. Sasajima,
T. Yamaguchi,
Y. Koike,
A. Hara

**Abstract:**

**Keywords:**
Nonlinear Vibration,
Finite Element Method,
Chaos ,
Small Earphone.

##### 2148 Numerical Study of a Class of Nonlinear Partial Differential Equations

**Authors:**
Kholod M. Abu-Alnaja

**Abstract:**

**Keywords:**
Crank-Nicolson Scheme,
Douglas Scheme,
Partial
Differential Equations

##### 2147 On Problem of Parameters Identification of Dynamic Object

**Authors:**
Kamil Aida-zade,
C. Ardil

**Abstract:**

**Keywords:**
dynamic objects,
ordinary differential equations,
multipoint unshared edge conditions,
quadratic programming,
conditions shift