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Abstract—Two consensus problems are considered in this
paper. One is the consensus of linear multi-agent systems with
weakly connected directed communication topology. The other
is the consensus of nonlinear multi-agent systems with strongly
connected directed communication topology. For the first problem,
a simplified consensus protocol is designed: Each child agent can
only communicate with one of its neighbors. That is, the real
communication topology is a directed spanning tree of the original
communication topology and without any cycles. Then, the necessary
and sufficient condition is put forward to the multi-agent systems can
be reached consensus. It is worth noting that the given conditions do
not need any eigenvalue of the corresponding Laplacian matrix of the
original directed communication network. For the second problem,
the feedback gain is designed in the nonlinear consensus protocol.
Then, the sufficient condition is proposed such that the systems can
be achieved consensus. Besides, the consensus interval is introduced
and analyzed to solve the consensus problem. Finally, two numerical
simulations are included to verify the theoretical analysis.

Keywords—Consensus, multi-agent systems, directed spanning
tree, the Laplacian matrix.

I. INTRODUCTION

OVER the last few decades, consensus has been an

important research topic in the field of cooperative

control of multi-agent systems. A consensus concept is that

multiple agents reach a common goal by using the information

of neighbors. The consensus problem plays an important role

in studying the behaviors of multi-agent systems. Consensus

research areas include: attitude control of satellites, sensor

networks and formation control etc.

Some basic consensus issues of multi-agent systems

are introduced and analyzed in [1] such as consensus in

discrete-time, f -consensus problems, consensus in switching

networks, iterative consensus and weighted average consensus.

In [2], the consensus problem of linear multi-agent systems is

considered. A new method based on observer-type protocol

is introduced. The protocol is distributed and based on

the relative output information of neighbors. In [3], the

consensuses of continuous-time and discrete-time linear

multi-agent systems are studied. The consensus protocols

are designed based on the observer and reduced order. In

[4], the edge- and node-based protocols are designed to

solve the consensus problem of multi-agent systems with

linear dynamics. In both protocols, the coupling weight is

variable over time. In [5] and [6], a r-consensus problem

of the high-order multi-agent systems is introduced. The

corresponding local control protocols are designed to solve

consensus problems. In [7], consensus of multi-agent systems
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with linear dynamics and high-order is studied by designing

a consensus protocol. In the protocol, the state of each agent

relies on other partial relevant states at the current time. In [8],

the second-order consensus of nonlinear multi-agent systems

is considered. The ability to achieve consensus is described

by a new generalized algebraic connectivity. In [9] and [10],

the pinning control of complex networks is studied by using

the properties of M-matrix. A pinning plan is proposed which

includes what class of nodes must be pinned and what class of

nodes should be preferentially pinned. In [11], the distributed

consensus algorithms are proposed to achieve the consensus of

multi-agent networks. A class of smooth functions is designed

in the consensus algorithms that can achieve consensus. In

[12], the consensus problem of high-order linear multi-agent

systems is studied by a linear transformation. The gain

matrices are designed in the consensus protocol.

In this paper, some consensus problems of the general

linear and nonlinear multi-agent systems are studied. The

case of linear system, the corresponding communication

topology has a directed spanning tree. A simplified consensus

protocol is designed. In the protocol, each child agent

can only obtain information from one of its neighbor

agents. Under the simplified consensus protocol, the real

communication topology is a minimum directed spanning

tree. The complicated exchange of information in the

communication topology can be reduced. By derivation, the

necessary and sufficient conditions are obtained such that

the multi-agent systems can be reached consensus. The case

of nonlinear system, the feedback gain is designed in the

consensus protocol. After some calculations, the sufficient

condition without needing any global information is obtained.

The paper is roughly divided into several major parts

as follows. Some correlative notations and preliminaries are

reviewed in Section II. In Section III, the necessary and

sufficient conditions are obtained to solve the consensus

problem in linear systems. The concept of consensus interval

is also introduced. The consensus problem of nonlinear

systems with the consensus protocol having the feedback gain

is studied in Section IV. Simulation results are presented

in Section V to verify the theoretical analysis. Finally,

conclusions are stated in Section VI.

II. PRELIMINARIES AND NOTATIONS

Let Rn×n denote the set of real matrices with n × n
dimensional. M is a matrix, MT denotes its transpose. IN
represents an N -dimensional identity matrix, 1 denotes the

column vector whose elements are all ones. If the real parts
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of all the eigenvalues of a matrix are negative, then the matrix

is Hurwitz. For the matrices X and Y , X ⊗ Y denotes their

Kronecker product.

The communication topology of a multi-agent network can

be described by a directed graph G = (V,E) where V denotes

a node set, E ⊆ V ×V denotes an edge set. (j, i) ∈ E means

the node j has a directed edge to the node i. The neighbors

of agent i are denoted by Ni = {j ∈ V : (j, i) ∈ E}. For a

digraph, a directed spanning tree contains all the nodes of the

digraph and it is a directed tree. If a directed graph exists a

node that has a directed path to every other node, then we can

call the directed graph has a directed spanning tree.

Suppose that a digraph has n nodes. W = (wij) ∈ Rn×n

denotes the adjacency matrix of the digraph, where wii = 0,

wij = 1 if (j, i) ∈ E and wij = 0 otherwise. L = (lij) ∈
Rn×n denotes the corresponding Laplacian matrix, where

lii =
∑

j �=i wij and lij = −wij , j �= i.

Lemma 1. [2] The Laplacian matrix has a zero eigenvalue,
the corresponding right eigenvector is 1 and the other
eigenvalues have positive real parts. A digraph has a directed
spanning tree if and only if zero is a simple eigenvalue of the
corresponding Laplacian matrix.

Lemma 2. (Hurwitz criterion) Consider a polynomial
equation

λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an = 0,

the necessary and sufficient condition of all roots having
negative real part is

Tk =

∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 . . . 0
a3 a2 a1 . . . 0
a5 a4 a3 . . . 0
...

...
...

...
a2k−1 a2k−2 a2k−3 . . . ak

∣∣∣∣∣∣∣∣∣∣∣
> 0,

k = 1, 2, . . . , n, aj = 0 if j > n.

Lemma 3. [8] For the matrices E,F,G and H having
appropriate dimensions, they satisfy:

1) (γE)⊗ F = E ⊗ (γF ), where γ is a constant.
2) (E + F )⊗G = E ⊗G+ F ⊗G.
3) (E ⊗ F )(G⊗H) = (EG)⊗ (FH).
4) (E ⊗ F )T = ET ⊗ FT .

Lemma 4. [8] For a network, the adjacency matrix is
irreducible if and only if the network is strongly connected.

Lemma 5. [8] If a matrix LN×N is irreducible, then there
exists a positive left eigenvector c = (c1, c2, . . . , cN )T satisfies
cTL = 0.

Lemma 6. [10] For real vectors u = (u1, u2, . . . , un)
T , v =

(v1, v2, . . . , vn)
T and a nonnegative matrix M = (mij)n×n

with mij ≥ 0, having:

uTMv ≤ 1

2

n∑
i=1

n∑
j=1

(miju
2
i +mjiv

2
i ).

III. CONSENSUS UNDER THE SIMPLIFIED PROTOCOL

In this section, we consider a consensus problem of systems

with N agents and linear dynamics. The dynamics of agent i
as in [2] can be described by

ẋi = Pxi +Qui, i = 1, . . . , N (1)

where xi ∈ Rn and ui ∈ Rn denote the state and control

input of agent i, respectively. P and Q are constant n × n
dimensional matrices. Assume that (P,Q) is stabilizable and

detectable.

The communication topology can be denoted by a directed

graph G. Suppose that the directed graph G has a directed

spanning tree. The information exchange between the agents

can be restricted to the directed spanning tree. The real

communication topology is the directed spanning tree. Each

child node of the simplified graph can only get information

from one of its neighbors except the root node. The exchange

of information in the original directed graph G is simplified.

Thus, every child node can obtain information from the root

node easily and the complex exchange of information can be

reduced. Let the root node number be 1 and the numbers of

other nodes be named according to their distance from the root

node.

The simplified consensus protocol is given by

ẋi = Pxi +Qui

ui =

{
0 i = 1
σ(xi − xj) i = 2, . . . , N

(2)

where the real number σ > 0 denotes the coupling strength,

agent j ∈ Ni, agent i can obtain information from agent j
and j < i. Under the simplified consensus protocol, each child

agent can only obtain information from one of its neighbors.

By (2), (1) can be written as

ẋ = (IN ⊗ P + σL⊗Q)x (3)

where x = (xT
1 , . . . , x

T
N )T and L ∈ RN×N is the Laplacian

matrix of the simplified directed graph. L has a simple

zero-eigenvalue, and the other eigenvalues are all ones.
If the states of (3) satisfy

xi(t) → xj(t) ∀i, j = 1, . . . , N, as t → ∞, (4)

one can say (2) solves the consensus problem.
Let cT = (c1, . . . , cN )T denote a left eigenvector of L that

satisfies cTL = 0 and cT 1N = 1. Then, the error variables can
be given by:

�(t) =
(
(IN − 1NcT )⊗ In

)
x(t) (5)

where � = (�T1 , . . . , �
T
N )T that satisfies (cT ⊗ In)� = 0. One can

obtain the following error dynamical systems:

�̇ = (IN ⊗ P + σL⊗Q)�. (6)

The following theorem presents a necessary and sufficient condition
that solves the consensus problem.

Theorem 1. Suppose that the multi-agent network (3) whose
communication topology G has a directed spanning tree. Consensus
in the dynamic protocol (2) can be reached if and only if the matrix
P + σQ is Hurwitz.

Proof: Obviously, IN − 1NcT has a simple zero-eigenvalue, the
corresponding right eigenvector is 1, and 1 is the other eigenvalue,
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the multiplicity is N−1. Hence, the consensus in (3) can be reached
if and only if �(t) → 0 as t → ∞.

Due to G has a directed spanning tree, by Lemma 1 and the
simplified consensus protocol, zero is a simple eigenvalue of L
and the other eigenvalues are all ones. Let A ∈ RN×(N−1), B ∈
R(N−1)×N , C ∈ RN×N , and lower triangular D ∈ R(N−1)×(N−1)

satisfy C = (1 A), C−1 =
(
cT

B

)
, C−1LC = J =

(
0 0
0 D

)
,

where the diagonal entries of D are all ones. Let δ = (C−1 ⊗ In)�,
where � is defined in (6) and δ = (δT1 , . . . , δ

T
N )T . Then, (6) can be

written as:

δ̇ = (IN ⊗ P + σJ ⊗Q)δ. (7)

Due to δ1 = (cT ⊗ In)� ≡ 0, then the N − 1 subsystems along the
diagonal

δ̇i = (P + σQ)δi, i = 2, . . . , N (8)

are asymptotically stable if and only if (7) are asymptotically stable.
By P + σQ is Hurwitz, the proof is completed.

Remark 1. Theorem 1 implies that the consensus problem of
multi-agent systems can be seen as the consensus problem of
multiple subsystems. If each subsystem of multi-agent systems can
be reached consensus, then multi-agent systems can be reached too.
If the communication graph has a disconnected node, obviously, the
consensus cannot be reached. The given communication graph has a
directed spanning tree, the condition is general and weak.

It is worth mentioning that the necessary and sufficient condition of
consensus in [2] need global information. The consensus is affected
by eigenvalues of the relevant Laplacian matrix. In this paper, the
given the necessary and sufficient condition of consensus does not
need any global information, thus the condition is better.

Remark 2. In Theorem 1, a simplified consensus protocol is used,
which is based on child node can only obtain information from one
of neighbor nodes. From the conditions of Theorem 1, we know
that how to choose the coupling strength σ, matrices P and Q
are the key points. The coupling strength is similar to the coupling
strength in [2], [3] and [4]. For the stabilizable and detectable
matrices (P,Q), the only additional task is appropriately adjusting
the coupling strength σ. In the following section A, the concept of
consensus interval is introduced and analyzed for solving the problem
and the Hurwitz criterion is used for solving consensus interval
problems.

Theorem 2. For the systems (3), if conditions in Theorem 1 are
satisfied, then

xi(t) → φ(t)
Δ
= (cT ⊗ ePt)

⎡
⎢⎣

x1(0)
...

xN (0)

⎤
⎥⎦ ,

i = 1, 2, . . . , N, as t → ∞ (9)

where c ∈ RN satisfies cTL = 0 and cT 1 = 1.

Proof: The solution of (3) can be obtained as

x(t) = e(IN⊗P+σL⊗Q)tx(0)

= (C ⊗ In)e
(IN⊗P+σJ⊗Q)t(C−1 ⊗ In)x(0)

= (C ⊗ In)
[
ePt 0

0 e
(IN−1⊗P+σD⊗Q)t

]
(C−1 ⊗ In)x(0) (10)

where matrices C, J and D are defined in the proof of Theorem 1, and
from the conditions of Theorem 1, one knows that IN−1⊗P+σD⊗Q
is Hurwitz. Thus, one can obtain the following from (10):

e(IN⊗P+σL⊗Q)t → (C ⊗ In)

[
ePt 0
0 0

]
(C−1 ⊗ In)

= (1 ⊗ In)e
Pt(cT ⊗ In)

= (1cT )⊗ ePt, as t → ∞ (11)

implying that

xi → (cT ⊗ ePt)

⎡
⎢⎣

x1(0)
...

xN (0)

⎤
⎥⎦ , as t → ∞,

where i = 1, 2, . . . , N .

Remark 3. In Theorem 2, the consensus value problem of multi-agent
systems has been solved. If P is Hurwitz, then the consensus value is
zero. If one of the eigenvalues of matrix P have positive real parts,
the agents can reach consensus at a nonzero value under the protocol
(2).

A. Consensus Interval
Clearly, the stability of systems (8) depends on the coupling

strength σ. For an interval S, when the coupling strength σ ∈ S,
(8) is asymptotically stable, then the interval S can be called the
consensus interval. Consensus in (3) can be reached if and only if
σ ∈ S. S can be an interval or several intervals. The stability of the
matrix P + σQ can be determined by the consensus interval S. The
consensus interval problem can be solved by using Hurwitz criterion.

IV. CONSENSUS OF NONLINEAR MULTI-AGENT SYSTEMS

In this section, the consensus problem of nonlinear multi-agent
systems is considered and the corresponding communication graph is
strongly connected. The multi-agent systems with nonlinear dynamics
can be described by

ẋi(t) = f(t, xi(t)) + ui(t), i = 1, 2, . . . , N, (12)

where xi = (xi1, xi2, . . . , xin)
T is the state of the ith agent,

f(t, xi) =(f1(t, xi), f2(t, xi), . . . , fn(t, xi))
T ∈ Rn is a continuous

vector-valued function, the function describes inherent dynamics of
the ith agent, and ui is the control input of the ith agent which needs
to be designed.

Consider the following control algorithm to reach consensus of
multi-agent systems (12):

ẋi(t) =f(t, xi(t)) + ui(t)

ui(t) =− γxi(t) +

N∑
j=1

wij(xj(t)− xi(t)),

i = 1, 2, . . . , N. (13)

where γ is the state feedback gain of the ith agent, wij is a entry
of adjacency matrix W . The consensus protocol is similar to the
protocol of [12]. If (4) is satisfied, we can say that the multi-agent
systems (12) achieve consensus.

Lemma 7. For the function f in (12), there is a nonnegative matrix
H = (hij)n×n satisfies

|fj(t, x)− fj(t, y)| ≤
n∑

k=1

hjk |xk − yk| ,

j = 1, 2, . . . , n, (14)

where x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T .

By Lemma 7 and the nonnegative adjacency matrix W , let

ρ =
1

2
max

1≤j≤n

n∑
k=1

(wjk + wkj), (15)

where ρ is nonnegative. The systems (13) can be written as:

ẋ = f(t, x)− ((L+ γIN )⊗ In)x (16)

where f(t, x) = (fT (t, x1), f
T (t, x2), . . . , f

T (t, xN ))T and x =
(xT

1 , x
T
2 , . . . , x

T
N )T .
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Let a positive vector cT = (c1, . . . , cN )T satisfy cTL = 0 and
cT 1N = 1. Then, one can obtain the following error variable:

�(t) = ((IN − 1NcT )⊗ In)x(t) (17)

where �(t) = (�T1 (t), �
T
2 (t), . . . , �

T
N (t))T and �i =

(�i1, �i2, . . . , �in)
T , i = 1, 2, . . . , N . Let x̄ = (1NcT )x. From (16)

and (17), one can get:

�̇ = ((IN − 1cT )⊗ In)(f(t, x)− ((L+ γIN )⊗ In)x)

= ((IN − 1cT )⊗ In)f(t, x)− ((L+ γIN )⊗ In)� (18)

Theorem 3. For the systems (12), the communication graph is
strongly connected and (14) satisfies. Then, the consensus problem
of system (13) can be solved if ρ < γ. where ρ, γ are defined in (15)
and (13), respectively.

Proof: Consider the Lyapunov function:

V (t) =
1

2
�T (t)(Ξ⊗ In)�(t) (19)

where Ξ = diag(c1, c2, . . . , cN ) > 0. Obviously, V (t) ≥ 0, and
V (t) = 0 if and only if � = 0. The time derivative of V (t) is:

V̇ (t) = �T (Ξ⊗ In)
((

(IN − 1cT )⊗ In
)
f(t, x)

− (
(L+ γIN )⊗ In

)
�
)

= �T (Ξ⊗ In)
(
(IN − 1cT )⊗ In

)
f(t, x)

− �T
(
Ξ(L+ γIN )⊗ In

)
�

= �T (Ξ⊗ In)
(
f(t, x)− 1 ⊗ f(t, x̄)

)
− �T (Ξ⊗ In)

(
(1cT )⊗ In

)
f(t, x)

+ �T (Ξ⊗ In)
(
1 ⊗ f(t, x̄)

)
− �T

(
Ξ(L+ γIN )⊗ In

)
� (20)

Since �(t) =
(
(IN − 1NcT )⊗ In

)
x(t) and cT 1N = 1, one has

�T (Ξ⊗ In)
(
(1cT )⊗ In

)
f(t, x)

= fT (t, x)
(
(c1T )⊗ In

)
(Ξ⊗ In)�

= fT (t, x)
(
(c1T )⊗ In

)
(Ξ⊗ In)

× (
(IN − 1NcT )⊗ In

)
x(t)

= fT (t, x)
(
(ccT )⊗ In

)(
(IN − 1NcT )⊗ In

)
x(t)

= fT (t, x)
(
(ccT )(IN − 1NcT )⊗ In

)
x(t) = 0 (21)

�T (Ξ⊗ In)
(
1 ⊗ f(t, x̄)

)
=

(
1T ⊗ fT (t, x̄)

)
(Ξ⊗ In)�

=
(
1T ⊗ fT (t, x̄)

)
(Ξ⊗ In)

× (
(IN − 1NcT )⊗ In

)
x(t)

=
(
rT (IN − 1NcT )⊗ fT (t, x̄)

)
x(t) = 0 (22)

Note that (1/2)(ΞL + LTΞ)1N = 0 and (1/2)(ΞL + LTΞ) is a
matrix whose off-diagonal elements are all nonpositive and diagonal
elements are all positive, so the matrix is a Laplacian matrix and all
the eigenvalues of the matrix are nonnegative i.e.

λi

(
(1/2)(ΞL+ LTΞ)

) ≥ 0, i = 1, 2, . . . , N. (23)

By Lemma 7, one can obtain

�Ti (f(t, xi)− f(t, x̄i))

= (�i1, . . . , �in)

⎛
⎜⎝

f1(t, xi)− f1(t, x̄i)
...

fn(t, xi)− fn(t, x̄i)

⎞
⎟⎠

= �i1(f1(t, xi)− f1(t, x̄i))+

· · ·+ �in(fn(t, xi)− fn(t, x̄i))

≤ |�i1| |f1(t, xi)− f1(t, x̄i)|+
· · ·+ |�in| |fn(t, xi)− fn(t, x̄i)|

≤ |�i1|
n∑

k=1

m1k |xik − x̄ik|+

· · ·+ |�in|
n∑

k=1

mnk |xik − x̄ik|

= |�i1|
n∑

k=1

m1k |�ik|+ · · ·+ |�in|
n∑

k=1

mnk |�ik|

=

n∑
j=1

|�ij |
n∑

k=1

mjk |�ik|

= �̂Ti M�̂i (24)

where �̂i = (|�i1| , . . . , |�in|)T .
By (15), (20)−(24) and Lemma 6, one has

V̇ (t) = �T (Ξ⊗ In)
(
f(t, x)− 1 ⊗ f(t, x̄)

)
− �T

(
Ξ(L+ γIN )⊗ In

)
�

=
N∑
i=1

ci�
T
i

(
f(t, xi)− f(t, x̄i)

)

− �T
(
Ξ(L+ γIN )⊗ In

)
�

≤
N∑
i=1

ci�̂
T
i M�̂i − �T

(
Ξ(L+ γIN )⊗ In

)
�

≤ 1

2

N∑
i=1

ci
( n∑

j=1

n∑
k=1

(mjk +mkj)�̂
2
ij

)

− �T
(
Ξ(L+ γIN )⊗ In

)
�

= ρ

N∑
i=1

ci

n∑
j=1

�̂2ij − �T
(
Ξ(L+ γIN )⊗ In

)
�

= ρ
N∑
i=1

ci

n∑
j=1

�2ij − �T (γΞ⊗ In)�

− 1

2
�T

(
(ΞL+ LTΞ)⊗ In

)
�

≤ (ρ− γ)

N∑
i=1

ci

n∑
j=1

�2ij (25)

By the conditions of Theorem 3, one knows that V̇ (t) ≤ 0 and
V̇ (t) ≡ 0 holds if and only if �(t) = 0. Hence, by LaSalle’s
invariance principle [13], the consensus problem of systems (13) is
solved.

Remark 4. From Theorem 3, one knows that if the feedback gain γ
is bigger than the positive scale ρ, the nonlinear multi-agent systems
(13) can reach consensus. A favorable feature of the consensus
protocol (13) is that its feedback gain γ can be independently
designed. It is worth mentioning that the sufficient conditions do not
need any global information.
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Fig. 1 The communication topology of linear multi-agent

systems
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Fig. 2 The consensus errors xi − x1 of six-agent network (3)

when c = 0.5

V. SIMULATION

In this section, two examples are given to illustrate the
effectiveness of the above theoretical analyses.

Example 1. Consider linear multi-agent systems with six agents as
following:

ẋi = Pxi +Qui, i = 1, . . . , 6

and consensus protocol is given by

ẋi = Pxi +Qui

ui =

{
0 i = 1
σ(xi − xj) i = 2, . . . , 6

where xi = (xi1, xi2, xi3, xi4)
T ,

P =

⎛
⎜⎝

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎞
⎟⎠ , Q =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
−1 −2 −3 −4

⎞
⎟⎠ .

The characteristic equation of P + σQ is

det(λI − (P + σQ)) = λ4 + 4σλ3 + 9σλ2 + 12σλ+ 6σ.
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0

1000

2000

3000

4000

t

x i−
x 1
,i=
1,
...
,6

Fig. 3 The consensus errors xi − x1 of six-agent network (3)

when c = 0.4

Fig. 4 The communication topology of nonlinear multi-agent

systems

By Hurwitz criterion, P + σQ is stable if and only if

T1 = 4σ > 0, T2 =

(
4σ 1
12σ 9σ

)
> 0,

T3 =

⎛
⎝ 4σ 1 0

12σ 9σ 4σ
0 6σ 12σ

⎞
⎠ > 0, T4 = 6σT3 > 0. By

computing, we have σ > 0.4286. So the consensus interval is
σ > 0.4286. Let the corresponding communication graph be G (See
Fig1). The adjacency matrix is

W =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
1 0 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

.

By using the protocol (2), the consensus errors xi−x1 of the six-agent
network are depicted with different σ (See Fig 2 and Fig 3). The
consensus interval issue is similar to the cousensus region issue in
[2]. The consensus interval can be easily obtained by using Hurwitz
criterion even if the systems are high dimensional.

Example 2. Consider the nonlinear multi-agent systems composed
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Fig. 5 The states of six agents with nonlinear dynamics

of six agents as (13):

ẋi(t) = f(t, xi(t)) + ui(t)

ui(t) = −γxi(t) +

N∑
j=1

wij (xj(t)− xi(t))

, i = 1, 2, . . . , N

where xi = (xi1, xi2, xi3)
T and the nonlinear function

f(t, xi) = (f1(t, xi), f2(t, xi), f2(t, xi))
T , (26)

in which

f1(t, xi) = |0.5xi1 + 1| − |2.5xi1 − 1|+ sin(xi2)

f2(t, xi) = |1.2xi2 + 1|+ |0.8xi2 − 1|+ sin(1.5xi3)

f3(t, xi) = |1.7xi1 + 1| − |2.3xi1 − 1|+ sin(5xi3)

After some calculations, one can obtain the following matrix satisfies Lemma
7 with the nonlinear function (26):

M =

⎛
⎝

3 1 0
0 2 1.5
4 0 5

⎞
⎠ .

By (15), one can get ρ = 7.75. The communication topology of nonlinear
multi-agent systems (13) is shown in Fig 4. One can choose γ = 7.76 > ρ =
7.75. With the consensus protocol, the states of six agents can be reached
consensus that is shown in Fig 5.

VI. CONCLUSION

In this paper, the linear multi-agent systems and the nonlinear
multi-agent systems are studied, and their corresponding
communication topologies are directed. For the linear systems,
under a special consensus protocol, each child agent can only
obtain information from one of its neighbor agents. Therefore, the
information transmission paths of the communication graph are
optimized. The concept of consensus interval is introduced, and the
consensus interval is analyzed by using the Hurwitz criterion. For
nonlinear systems, the feedback gain is designed in the consensus
protocol. The conditions we obtained from both systems do not
require any global information. The cases of time delay, switching
topologies, and high order multi-agent systems are interesting topics
in future work.
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