Search results for: robust iterative PID
945 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System
Authors: Ahmed Bensenouci
Abstract:
This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055944 Approximating Fixed Points by a Two-Step Iterative Algorithm
Authors: Safeer Hussain Khan
Abstract:
In this paper, we introduce a two-step iterative algorithm to prove a strong convergence result for approximating common fixed points of three contractive-like operators. Our algorithm basically generalizes an existing algorithm..Our iterative algorithm also contains two famous iterative algorithms: Mann iterative algorithm and Ishikawa iterative algorithm. Thus our result generalizes the corresponding results proved for the above three iterative algorithms to a class of more general operators. At the end, we remark that nothing prevents us to extend our result to the case of the iterative algorithm with error terms.
Keywords: Contractive-like operator, iterative algorithm, fixed point, strong convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022943 The Convergence Results between Backward USSOR and Jacobi Iterative Matrices
Authors: Zuan-De Wang, Hou-biao Li, Zhong-xi Gao
Abstract:
In this paper, the backward Ussor iterative matrix is proposed. The relationship of convergence between the backward Ussor iterative matrix and Jacobi iterative matrix is obtained, which makes the results in the corresponding references be improved and refined.Moreover,numerical examples also illustrate the effectiveness of these conclusions.
Keywords: Backward USSOR iterative matrix, Jacobi iterative matrix, convergence, spectral radius
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303942 The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices
Authors: Zhuan-de Wang, Hou-biao Li, Zhong-xi Gao
Abstract:
In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.
Keywords: Backward MPSD iterative matrix, Jacobi iterative matrix, eigenvalue, p-cyclic matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777941 ILMI Approach for Robust Output Feedback Control of Induction Machine
Authors: Abdelwahed Echchatbi, Adil Rizki, Ali Haddi, Nabil Mrani, Noureddine Elalami
Abstract:
In this note, the robust static output feedback stabilisation of an induction machine is addressed. The machine is described by a non homogenous bilinear model with structural uncertainties, and the feedback gain is computed via an iterative LMI (ILMI) algorithm.Keywords: Induction machine, Static output feedback, robust stabilisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878940 A New Preconditioned AOR Method for Z-matrices
Authors: Guangbin Wang, Ning Zhang, Fuping Tan
Abstract:
In this paper, we present a preconditioned AOR-type iterative method for solving the linear systems Ax = b, where A is a Z-matrix. And give some comparison theorems to show that the rate of convergence of the preconditioned AOR-type iterative method is faster than the rate of convergence of the AOR-type iterative method.
Keywords: Z-matrix, AOR-type iterative method, precondition, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554939 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices
Authors: Li Jiang, Baoguang Tian
Abstract:
In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our results.Keywords: Z-matrix, mixed-type splitting iterative method, precondition, comparison theorem, linear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202938 Fixed Points of Contractive-Like Operators by a Faster Iterative Process
Authors: Safeer Hussain Khan
Abstract:
In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves andgeneralizes corresponding results in the literature in two ways: iterativeprocess is faster, operators are more general. At the end, we indicatethat the results can also be proved with the iterative process witherror terms.
Keywords: Contractive-like operator, iterative process, fixed point, strong convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711937 Sprayer Boom Active Suspension Using Intelligent Active Force Control
Authors: M. Tahmasebi, R.A. Rahman, M. Mailah, M. Gohari
Abstract:
The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.
Keywords: Active force control, sprayer boom, active suspension, iterative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299936 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product
Authors: Xingping Sheng
Abstract:
Let T and S be a subspace of Cn and Cm, respectively. Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized inverse A(2) T,S is given by A(2) T,S = (PS⊥APT )†. In this paper, a finite formulae is presented to compute generalized inverse A(2) T,S under the concept of restricted inner product, which defined as < A,B >T,S=< PS⊥APT,B > for the A,B ∈ Cm×n. By this iterative method, when taken the initial matrix X0 = PTA∗PS⊥, the generalized inverse A(2) T,S can be obtained within at most mn iteration steps in absence of roundoff errors. Finally given numerical example is shown that the iterative formulae is quite efficient.Keywords: Generalized inverse A(2) T, S, Restricted inner product, Iterative method, Orthogonal projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257935 Iterative solutions to the linear matrix equation AXB + CXTD = E
Authors: Yongxin Yuan, Jiashang Jiang
Abstract:
In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.Keywords: matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555934 Iterative Methods for An Inverse Problem
Authors: Minghui Wang, Shanrui Hu
Abstract:
An inverse problem of doubly center matrices is discussed. By translating the constrained problem into unconstrained problem, two iterative methods are proposed. A numerical example illustrate our algorithms.
Keywords: doubly center matrix, electric network theory, iterative methods, least-square problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479933 Efficient Iterative Detection Technique in Wireless Communication System
Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song
Abstract:
Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMO-OFDM system is important issue. In this paper, efficient iterative V-BLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6% less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.
Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRD-M, DFE, Iterative scheme, Channel condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056932 Iterative Methods for Computing the Weighted Minkowski Inverses of Matrices in Minkowski Space
Authors: Xiaoji Liu, Yonghui Qin
Abstract:
In this note, we consider a family of iterative formula for computing the weighted Minskowski inverses AM,N in Minskowski space, and give two kinds of iterations and the necessary and sufficient conditions of the convergence of iterations.
Keywords: iterative method, the Minskowski inverse, A
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419931 Robust Ellipse Detection by Fitting Randomly Selected Edge Patches
Authors: Watcharin Kaewapichai, Pakorn Kaewtrakulpong
Abstract:
In this paper, a method to detect multiple ellipses is presented. The technique is efficient and robust against incomplete ellipses due to partial occlusion, noise or missing edges and outliers. It is an iterative technique that finds and removes the best ellipse until no reasonable ellipse is found. At each run, the best ellipse is extracted from randomly selected edge patches, its fitness calculated and compared to a fitness threshold. RANSAC algorithm is applied as a sampling process together with the Direct Least Square fitting of ellipses (DLS) as the fitting algorithm. In our experiment, the method performs very well and is robust against noise and spurious edges on both synthetic and real-world image data.
Keywords: Direct Least Square Fitting, Ellipse Detection, RANSAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228930 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems
Authors: Shengfeng Li, Rujing Wang
Abstract:
In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882929 An Iterative Method for the Least-squares Symmetric Solution of AXB+CYD=F and its Application
Authors: Minghui Wang
Abstract:
Based on the classical algorithm LSQR for solving (unconstrained) LS problem, an iterative method is proposed for the least-squares like-minimum-norm symmetric solution of AXB+CYD=E. As the application of this algorithm, an iterative method for the least-squares like-minimum-norm biymmetric solution of AXB=E is also obtained. Numerical results are reported that show the efficiency of the proposed methods.
Keywords: Matrix equation, bisymmetric matrix, least squares problem, like-minimum norm, iterative algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489928 Existence of Iterative Cauchy Fractional Differential Equation
Authors: Rabha W. Ibrahim
Abstract:
Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.
Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684927 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's
Authors: J. Sulaiman, M. Othman, M. K. Hasan
Abstract:
Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.
Keywords: MEG iteration, second-order finite difference, weighted parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703926 An Iterative Method for Quaternionic Linear Equations
Authors: Bin Yu, Minghui Wang, Juntao Zhang
Abstract:
By the real representation of the quaternionic matrix, an iterative method for quaternionic linear equations Ax = b is proposed. Then the convergence conditions are obtained. At last, a numerical example is given to illustrate the efficiency of this method.
Keywords: Quaternionic linear equations, Real representation, Iterative algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768925 An Efficient Iterative Updating Method for Damped Structural Systems
Authors: Jiashang Jiang
Abstract:
Model updating is an inverse eigenvalue problem which concerns the modification of an existing but inaccurate model with measured modal data. In this paper, an efficient gradient based iterative method for updating the mass, damping and stiffness matrices simultaneously using a few of complex measured modal data is developed. Convergence analysis indicates that the iterative solutions always converge to the unique minimum Frobenius norm symmetric solution of the model updating problem by choosing a special kind of initial matrices.
Keywords: Model updating, iterative algorithm, damped structural system, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084924 Gauss-Seidel Iterative Methods for Rank Deficient Least Squares Problems
Authors: Davod Khojasteh Salkuyeh, Sayyed Hasan Azizi
Abstract:
We study the semiconvergence of Gauss-Seidel iterative methods for the least squares solution of minimal norm of rank deficient linear systems of equations. Necessary and sufficient conditions for the semiconvergence of the Gauss-Seidel iterative method are given. We also show that if the linear system of equations is consistent, then the proposed methods with a zero vector as an initial guess converge in one iteration. Some numerical results are given to illustrate the theoretical results.Keywords: rank deficient least squares problems, AOR iterativemethod, Gauss-Seidel iterative method, semiconvergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926923 Some New Upper Bounds for the Spectral Radius of Iterative Matrices
Authors: Guangbin Wang, Xue Li, Fuping Tan
Abstract:
In this paper, we present some new upper bounds for the spectral radius of iterative matrices based on the concept of doubly α diagonally dominant matrix. And subsequently, we give two examples to show that our results are better than the earlier ones.Keywords: doubly α diagonally dominant matrix, eigenvalue, iterative matrix, spectral radius, upper bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339922 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856921 Automated Particle Picking based on Correlation Peak Shape Analysis and Iterative Classification
Authors: Hrabe Thomas, Beck Florian, Nickell Stephan
Abstract:
Cryo-electron microscopy (CEM) in combination with single particle analysis (SPA) is a widely used technique for elucidating structural details of macromolecular assemblies at closeto- atomic resolutions. However, development of automated software for SPA processing is still vital since thousands to millions of individual particle images need to be processed. Here, we present our workflow for automated particle picking. Our approach integrates peak shape analysis to the classical correlation and an iterative approach to separate macromolecules and background by classification. This particle selection workflow furthermore provides a robust means for SPA with little user interaction. Processing simulated and experimental data assesses performance of the presented tools.Keywords: Cryo-electron Microscopy, Single Particle Analysis, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668920 Parallel Multisplitting Methods for Singular Linear Systems
Authors: Guangbin Wang, Fuping Tan
Abstract:
In this paper, we discuss convergence of the extrapolated iterative methods for linear systems with the coefficient matrices are singular H-matrices. And we present the sufficient and necessary conditions for convergence of the extrapolated iterative methods. Moreover, we apply the results to the GMAOR methods. Finally, we give one numerical example.
Keywords: Singular H-matrix, linear systems, extrapolated iterative method, GMAOR method, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351919 Semiconvergence of Alternating Iterative Methods for Singular Linear Systems
Authors: Jing Wu
Abstract:
In this paper, we discuss semiconvergence of the alternating iterative methods for solving singular systems. The semiconvergence theories for the alternating methods are established when the coefficient matrix is a singular matrix. Furthermore, the corresponding comparison theorems are obtained.
Keywords: Alternating iterative method, Semiconvergence, Singular matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655918 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree
Authors: S. A. Gayvoronsky, T. A. Ezangina
Abstract:
The robust control system objects with interval- undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.
Keywords: An interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593917 Parallel Explicit Group Domain Decomposition Methods for the Telegraph Equation
Authors: Kew Lee Ming, Norhashidah Hj. Mohd. Ali
Abstract:
In a previous work, we presented the numerical solution of the two dimensional second order telegraph partial differential equation discretized by the centred and rotated five-point finite difference discretizations, namely the explicit group (EG) and explicit decoupled group (EDG) iterative methods, respectively. In this paper, we utilize a domain decomposition algorithm on these group schemes to divide the tasks involved in solving the same equation. The objective of this study is to describe the development of the parallel group iterative schemes under OpenMP programming environment as a way to reduce the computational costs of the solution processes using multicore technologies. A detailed performance analysis of the parallel implementations of points and group iterative schemes will be reported and discussed.Keywords: Telegraph equation, explicit group iterative scheme, domain decomposition algorithm, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525916 Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method
Authors: Sachin Bhalekar, Varsha Daftardar-Gejji
Abstract:
In the present paper, we present a modification of the New Iterative Method (NIM) proposed by Daftardar-Gejji and Jafari [J. Math. Anal. Appl. 2006;316:753–763] and use it for solving systems of nonlinear functional equations. This modification yields a series with faster convergence. Illustrative examples are presented to demonstrate the method.Keywords: Caputo fractional derivative, System of nonlinear functional equations, Revised new iterative method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337