Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method
Authors: Sachin Bhalekar, Varsha Daftardar-Gejji
Abstract:
In the present paper, we present a modification of the New Iterative Method (NIM) proposed by Daftardar-Gejji and Jafari [J. Math. Anal. Appl. 2006;316:753–763] and use it for solving systems of nonlinear functional equations. This modification yields a series with faster convergence. Illustrative examples are presented to demonstrate the method.Keywords: Caputo fractional derivative, System of nonlinear functional equations, Revised new iterative method.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329849
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340References:
[1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[2] L. Debnath, Int. J. Math. and Math. Sci., 2003, 1(2003)
[3] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, 1994.
[4] J. H. He, Comput. Meth. Appl. Mech. Eng., 167, 57(1998)
[5] J. H. He, Comput. Meth. Appl. Mech. Eng., 178, 257(1999)
[6] V. Daftardar-Gejji, H. Jafari, J. Math. Anal. Appl., 316, 753(2006)
[7] S. Bhalekar, V. Daftardar-Gejji, Solving Riccati differential equations of fractional order using the new iterative method, (submitted for publication).
[8] S. Bhalekar, V. Daftardar-Gejji, New Iterative Method: Application to Partial Differential Equations, (submitted for publication).
[9] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
[10] H. Jafari, V. Daftardar-Gejji, Appl. Math. Comput., 181, 598(2006)
[11] A. M. Wazwaz, Comput. Math. Appl., 54, 895(2007)
[12] D.D. Ganji, M. Nourollahi, E. Mohseni, Comput. and Math. with Appl., (In press), doi:10.1016/j.camwa.2006.12.078.