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Automated Particle Picking based on
Correlation Peak Shape Analysis and lterative
Classification
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selection procedure. With the advent of high- tiglqaut data-

Abstract—Cryo-electron microscopy (CEM) in combination with acquisition routines [5][6], the need for automateakticle

single particle analysis (SPA) is a widely usedhiéque for

elucidating structural details of macromoleculssemsblies at close-
to-atomic resolutions. However, development of mated software
for SPA processing is still vital since thousands niillions of

individual particle images need to be processede Hee present our
workflow for automated particle picking. Our appchaintegrates
peak shape analysis to the classical correlatioth @m iterative
approach to separate macromolecules and backgrobpd
classification. This particle selection workflowrtieermore provides
a robust means for SPA with little user interactid®rocessing
simulated and experimental data assesses perfoemaficthe

presented tools.

extraction procedures became obvious and sevaabgies
have been suggested since [2] [7]-[9]. Given thelatively
robust performance at low SNRs, the majority oftipkr
picking methods to date are based on cross-cdmelating
templates matching [9]. However, cross-correlatioased
methods still suffer from false positive and negatimatches
by which candidate particle images are incorreatigepted or
rejected. High contrast features caused by sampleapation
or contamination are often the reason for thesengvroits.
Another problem is the intrinsically low SNR of orEM

micrographs typically ranging from 0.01 to 0.1 [Hence, the

Keywords—Cryo-electron Microscopy, Single Particle Analysis,'€finement of cross- correlation approaches toipefast and

Image Processing.

|. INTRODUCTION

N recent years "single particle analysis" (SPA)ured to a
key technology for structure determination in malec
structural biology [1]. The underlying principle Eased on
recording two-dimensional (2D), high-resolution atten

deterministic selection under low contrast and SMRditions
given minimal a priori knowledge (aiding in autoiat and
applicability to a wide selection of particleskissential.

Here we present an enhanced -cross-correlation based

particle-picking algorithm unifying the calculatiasf a “Fast
Local Correlation Function” (FLCF) with correlatiopeak

analysis based on “Peak to Sidelobe Ratio” (PSRJ an

micrographs each containing many, randomly orientedecond Order Correlation” (SOC) [10][11]. By cominig

macromolecular complexes. By aligning and classgythe
particle images iteratively the original projectiangles can be
determined and the three-dimensional density isnéar by
superposition of the "class averages". ldeally, pretein
complexes are preserved during the data acquigitiooess in
a close to native environment. This can be achiebgd
vitrification in a thin layer of ice, which comes the cost that
the sample is highly sensitive to radiation damageced by

each of the afore-mentioned criteria by a weighstdchastic
optimizer, a final correlation score is determin@@]. The
final candidate set of particle images is furthefined by an
iterative removal approach of false positives tisalbased on
Principal component analysis (PCA) and K-meanstetirg.
We demonstrate that this approach reduces significghe
requirements of a priori knowledge and exhaustigming by
using only a minimal training set. We further derstoate

the electron beam. Therefore electron micrographs dfidelity of the presented procedure by evaluatinthtsynthetic

recorded under strict low-dose conditions and cgpuneetly
suffer from low signal-to-noise ratios (SNRs) and Icontrast
levels [2]-[4].

and experimental data.

Il. ALGORITHMS

Averaging of many particle images increases the SNR A Optimizing cross-correlation

significantly and allows a meaningful classificatioand
reconstruction of the underlying three-dimensiopabtein

Correlation based localization of particles is ydased in
particle picking [13]. In the following, we introda the

complex [1]. Typical particle numbers needed foiis th mathematical concepts used in this manuscript &adegies

procedure reach from several tens of thousandseteral
millions. The extraction of the particle sub-imadesm the
full electron micrographs is the initial processstgp (Fig. 1)
that is often still carried out by a manual, useteractive
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for peak analysis of two-dimensional cross corretatmaps
[14]-[16].

1) Fast local cross-correlation

Cross-correlation search approaches are based en th

comparison of a searched, templafeand an electron
micrograph I. The similarity measure
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normalized cross-correlation coefficient havingiaterval of multiplying the Fourier transform of with the complex
[-1,1] (where -1 indicates a perfect inverted copy and1 a conjugate of the Fourier transform 6f[10]. The inverse
perfect match of two identical images). Cross-datien transformation of the product vyields cross-corietat

functions can be quickly calculated for large imabg coefficients at every position within the micrognagfor S.

/ Improved Correlaﬁoh / . . \ ( Selected ) Reconstruction

( Micrographs ) Filter Iterative Classifier Projections Methods

Fast Local Principal Component ! -

Cross Correlation Analysis i 1 M »
S 3 - ‘ X '
Peak to Sidelobe K-Means ALK YOGy

Ratio Clustering { M #

Second Order Automated adaption of .

\_  Comelation  / \ cluster size )

Fig. 1 Workflow of single particle analysis fromermscopy to the resulting 3D protein structure
In our case, the improved correlation filter auttinaly localizes and extracts projections of mawotecules from micrographs. Next, the
iterative classifier refines this selection by awoétically adapting a cluster acceptance thresfidid.remaining projections are then used to
determine the macromolecules 3D structure

This can be expressed as: space. The standard deviation of the local aramder the
footprint of the template is calculated by:
CC=F(F(NF(9*) 1)(
— 2 7
whereF denotes the respective Fourier transform, “*” desot 0 = E MUl | 4

the complex conjugate ari®tf indicates the inverse transform.

In this operation, the search templatéwhich is smaller in = .
. . . The scalar value$S and (s are calculated in the same way
size than the search image) must be zero-paddie tsize of - ) h
asl and //, corresponding to the (P/2 1 )™ value of the

the micrograph, prior to calculating the transform: X
Multiplication of the two transforms is an elemavise calcula_ted conv_olgtlons. We later rgfer to FLCC e
multiplication of the two matrice&(1) andF(s). determined coefficients by the FL@nction.

Each correlation score CCi is normalized by the lpemnof
considered points P in the template (i.e. the nundfenon
zero pixels in the template) as well as the los&rages, the
standard deviations of S and the local area of deurthe
footprint of S. The localized normalization of csesorrelation

2) Peak to sideloberatio

Correlation peak shape analysis has been introdaseah
additional constraint to cross correlation basetiga picking
[16]. Valid particles should yield sharp peaks &mito the
optimal shape of a delta function (a peak of indinialue

coefficient is
1 _
~cc,-sd ]
FLcc, =P — &)
gsL,
_ . . ﬂr
where | and /; are the mean and standard deviation of values e

in the image and the search template respectiié€ [I_I and

/| are the local mean and standard deviatior wfider the
footprint of templateS for each position (corresponding to
individual cross-correlation scor€¥;) within the image. The
mean value¢ are calculated by convolution éfand a binary
mask (M) corresponding to the zero-padded border of the Fig. 2 The improved correlation filter analyses gieak shape to

search templaté. In reciprocal space, the calculation of theéncrease accuracy for identifying a template. (bjokorrelation-peak

local mean for each position Iiis expressed as: specific for template (a). (d) Reveals the corfetapeak-shape of (c)
and (a). (d) resembles a damped copy of (b). (hifs the peak of

(e) correlated with (a). The pattern of (b) is abtainable here. Thus,
in order to improve picking reliability we extendedrrelation with
two functions: one focusing on the peak sharprieeak to sidelobe

ratio) and the other focusing on the peak shapeof8corder
correlation)

1 _
o = EMDI"‘—I2 3)

where [ represents the convolution &f and! in reciprocal
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surrounded by zeros), similar to the autocorrefatmf a
template (Fig. 2). The peak to sidelobe rafRSR) is a
measure of correlation peak sharpness, based onetiteal
peak value relative to those of its neighbors amlwe used to
distinguish “sharp peaks” (indicative for valid peles) from
“broad peaks” (indicative for false correlation rimaa) [11].
The sidelobe (SB) is the region around a correlatio
maximum extending to the radius of the templategiend his
area can be increased by a factor of two for lagagidjacent
particles. A small, center-region around the psakasked out
since typical correlation peaks are wider thandeali, single

pixel [11]. Given the mean correlation coefficieBB of SB
and the corresponding deviatiofdeiose, the PSR for each peak
in the correlation map is determined using theofsihg
expression:

FLCC, -SB,
PSR =— 1 —1 )
O-deobe,i
where FLCCygp

pixel inl. SB is calculated in a similar manner &s

— 1
$B =5 SBUFLCC,, (6)
The standard deviatiofygeone IS determined by:
1 s ==2
Ogddobe = ESB 0 FLCCy,, =SB (7)

3) Second order correlation

Rather than only focusing on peak sharpness wetP$R,
one may also focus on peak shape in order to fuimigrove
correlation fidelity to distinguishing the corratat profile of
noisy image regions and unwanted image features fralid
particles. By using Second Order Correlatiqi$sOC),
correlation peaks withinFLCCuap are correlated with the
autocorrelation function of the search templdi® (i.e.
correlation of(S) with itself) using theFLCF.
SOC = FLCF(FLCF(I,S),FLCF(S,9)) 8)

4) Training set

If no a priori information of the macromolecular structure
available, the user has to manually select a smathber
(<100) of particles for generating a training §&tS). This
training set is aligned and averaged forming a tatapused
for particle picking.

5) Optimized linear combination
The aim of combining the three methods (FL®SR and
SOC) was to improve correlation based particle selectitie
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merged the three functions to one by weightfiagh,c) the
respective function.

OLC=al FLCF +b[ PSR+c[ SOC 9)

Thus, we optimized the linear combination so thghést

nvalues are assigned to true particles. For thispgae,
representative points = (a,b,c) are assessed according to an
objective functiorof{p) using a training setrs).

Given a list of candidate particles organized iscgading
order according to the correspond®C values, the objective
function of{p) will yield a high score fop if the training set
members have the higheBL.C value. The next step was to
find the global optimum in the feature space spdnmea, b
and c¢. We determined the optimal linear combination for
(a,bc) using a standard stochastic optimizer, Simulated
Annealing (SA)[17].

B. Iterative classification
Selection of particles with the above introduced GOL

are the all coefficients determined for eVer);esulted in a reliable localization of candidateges(CS) on

the micrographs. However, whilst localization gueeas a
lower number of false negatives, the rate of falssitives
(showing up as outliers) turned out to be rathghhHence,
false positives need to be further classified axalueled from
the candidate set.

The iterative classifier introduced here mimics ‘theman”
particle picking process. Firstly, an experiencedspn would
select the obviously correct particles, and wolkhtincrease
the tolerance level by accepting particles havinglightly
different appearance. Clear outliers are iteragiesicluded by
progressively reducing the maximal permitted entrdgvel
between patrticles. False positives are thus remgvadually
in an adaptive manner.

1) Principal component analysis and K-means clustering

Principal component analysi§PCA) is a tool used to
analyze multi-dimensional data-sets in lower din@ms Such
a reduction of data-complexity limits the influenafenoise by
conserving data-typical features [8][18]. We us¥dl on the
union U of the training seT'S and the candidate s€f.
U=TSOCS (10)

This way, the number of true particles is increased
. corresponding features are amplified significanity the
ISeigenimages. Other image features such as camooherent
background and noise will be consequently mappéd @ss
significant eigenimages.

The unionU is furthermore projected into a reduced space
in a classical PCA manner [19], guaranteeing a nmobeist
classification result. The number of eigenimagestrilouting
to this reduction is regulated by the sum of tleégrenvalues,
which should at least cover 60% of the total var@an
Experiments with values as high as 90% revealed the
increasing influence of noise on classification.

1SN1:0000000091950263
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Fig. 3 Workflow of the particle selection algorithFirst, few projections in the micrographs aredusegenerate a Training Set from which a

Template is compiled. Micrographs used here arudgd from late
projections similar to the template and yieldsteo§eandidate proj

r particle selection. The improvedrelation filter robustly localizes
ections. These projections epeatedly decomposed with principal

component analysis and clustered with k-means. dMane the constant training set supports featufréseoparticle searched; projection set
and cluster size is successively reduced to adefared deviation threshold of candidate projeaiorhe remaining projections are eventually

returned as the

We then used K-means clustering as the second awmmpo
of the iterative classifier to separate true pltidrom false
positives [18]. Memberg of TS are used to indicaté
reference clusters for classification. We spedify tluster size

final projections

improvements, making a ‘“real time” particle pickingf
individual micrographs feasible.

1) Smulated data

s; of clusterj by determining the mean member Euclidian Test runs with simulated data provided a quangati

distanceu; from the center and the standard deviatipn

S, =M, +0, (11)
Every particlec in CS at a distance lower thafy; from cluster
centrej will be classified as a true particle (Fig. 3)

d, <s (12)

2) Iterations

The workflow outlined above is processed iterativigtig.
3). Particles are extracted from the candidatesgsahat each
new U yields eigenvectors different from those of thevimas
iteration. Thus, clustering is also repeated irhataration.

We furthermore decreasg. for each iteratiorm with the
use of a size factaf:
Sjm = lum + (SfSart - m[ SrSep)[ ajm (13)
Hereby we reduce the accepted distas)eeand, if required,
decrease the probability to wrongly assign falssitpes to a
clusterj. The valuesfs.re andsfsep are user dependent; typical
values were sfsirt =3 and sfsep = 0.25. The iterative

classification was stoppeflzns When a cluster size fzna was
reached:

S':End = SfSart - rﬂEnd [ Sf

Sep
I1l. METHODS

A. Implementation

The algorithm described above was implemented itidda
using the functionality of the TOM toolbox and tMatlab
Distributed Computing Toolbox for parallel processi[20].
The parallel implementation of the particle pickeses a load
balancing strategy that offers significant perfonce
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(14)

assessment of the developed algorithm whilst apglyi to
cryo-EM data demonstrated performance under “readdi
conditions.

2) Signal to noiseratio of cryo-EM micrographs

For quantitative, representative testing of theoatgm
under controlled, but realistic imaging conditiosgnulated
micrographs with a typic@NR of cryo-EM micrographs were
generated. We applied the protocol from [1] to aataly
measure theNR in the micrographs. The values within the
KLH dataset slightly varied around a valueSdfR=~0.3.

3) Smulated micrographs

Simulated micrographs were generated using randomly
oriented patrticles of the (KLH) complex (model dénsaken
from [7]). Each simulated micrograph contained tEde-
views (used as true particles) and fifteen top-gidwsed as
false particles) positioned randomly in the simedat
micrograph. Overlapping side-views were removednfiithe
list of true particles. Furthermore, an artificizhrbon edge
(typical for “real world” cryo-EM micrographs) was
|Simulated. Image acquisition was modeled accordmnghe
following protocol [21]:

1. Orientation of side-views was randomized to mimic
real electron micrographs.

2. An additive, Gaussian noise model was used for all
simulated data. The standard deviation of the
model was set to match the previously determined
SNR estimates (Section 3.A.2). TH&NR within
each simulated micrograph varied (between 0.4 -
0.1) over different areas to simulate variations in
ice thickness. (Fig. 4).

3. The contrast-transfer functiqi©TF) was applied to
simulate the image acquisition process in a cryo
electron microscope using a defocus setting of -3

1SN1:0000000091950263
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um and an acceleration voltage of 120 kV. Adegree of structural heterogeneity due to the 2Bsed
typical Modulation-transfer FunctiorfMTF) of stability. This results in potential false-posititiés. The ice-
approximately 20% at 0.5 Nyquist was applied t@mbedded 26S proteasomes were imaged using a Tecnhai
the simulated electron micrograph. Polara electron microscope operated at 300 kV [22].
4. Simulated micrographs were used to assess tMicrographs were collected at an under-focus ofud.Bvith a
localization byOLC. However, we also generatedGIF 2002 energy filter (Gatan Inc.). The final mdigation of
individual particles for testing the iterative 82,500x yielded an object-pixel size of 8.6An experienced
classifier. Thus, we generated particle stacks afser generated an interactively picked particle dis 18903
true particles (KLH side-views), false particlesparticles. The final three-dimensional reconstarctiwas
(KLH top-views) and particle stacks mimicking computed using the XMIPP program package [23]. Réiso
carbon and background noise. All particle stackfor these data set was determined to be Biding Fourier
were generated using the same simulatioBhell Correlation at the 0.5 criterion [24].

procedure as described above (1-3).

. IV. RESULTS
B. Cryo-€electron Microscopy Data

1) Keyhole Limpet Hemocyanin (KLH) A. Testing on Smulated Data
Although accurate simulated data allows quantimtes_ting Both components of the picker, the optimized linear
and benchmarking of a newly developed algorithm, gympination (0LC) (localization) and the iterative classifier

standardized and widely accepted dataset compregimgany  (c|assification) were tested independently usirg stmulated
electron micrographs is required to demonstrate abeial §5t5 sets.

performance under real-world imaging conditionsg(F4).
Here we have applied our algorithm to the “KLH data, 1) Localization

previously used in a particle picking bakeoff [7]. Table | lists the performance of the standard dafign
function andOLC. Datasets comprised simulated micrographs
with an invariant and a variant noise model (SectoA.2).
We improved localization accuracy by using an exéehpeak
shape analysifOLC). OLC was determined to

OLC =05[FLCF +0.1L PSR +0.4[ SOC

Furthermore, ten true particles (Section 3.A.3)emgresent in
each of ten simulated micrographs. Twenty candigatécles
were selected from each simulation after picking.

SNR 0.2 SNR 0.3
Fig. 4 Simulations of electron micrographs usedafsessing the 2) Classification
developed software. (a) Depicts artificial micrqgra using side and ~ The classification strategy was also tested forukired
top views of the Keyhole Limpet Hemocyanin (KLH) eramolecule  data. However, here we used stacks of heterogenabgsed

with varying signal to noise ratios (SNR) withineoimage. Varying  particles for testing. The complete particle steoksisted of
SNRs simulate varying ice thickness of vitrifiedrgdes. (b) Shows a . o .
micrograph taken from the KLH dataset used for herarking true positives and false positives:

particle selection algorithms. Typical pitfalls fantomated selection . . .
are low SNR, varying projection angles (b1), oyepiag particles 1. True positives —KLH Slde-ylews
(b2) and (high-contrast) contamination (b3). 2. False positives — KLH top-views / BaCkgrOUnd

This dataset was collected at an electron micrascop

operated at an accelerating voltage of 120 kV using TABLE |

2048x2048 pixel CCD camera atr under focus. The final FALSE PosITIVE (FPR) AND FALSE NEGATIVE (FNR) RATES REVEAL A
e . . . . A HIGHER ACCURACY OF THEOPTIMIZED LINEAR COMBINATION (OLC)

magnlflcgtlon was 66,000x resultlng in a plxel.sufez..ZA at COMPARED TO THESTANDARD CORRELATION FUNCTION (XCF)

the specimen level. Two reference lists of partoaderdinates, XCF oLC

one interactively picked by a user (Mouche) and oneNoise FPR FNR FPR FNR

automatically generated (Selexon), were used asntrat in  _Invariant 60% 23% 62% 26%

this study [9][16] Variant 62% 26% 56% 15%

Furthermore, we also generated a small training tget
comply with the iterative workflow we presented ¢Ben 2.B)
and merged it with the true positives. Hence, thal fstack
used for testing the iterative classifier consistéten training

2) 26S Proteasome

Additionally, a second dataset of the 26S proteasoras
used for testing the algorithm [22]. In contrasttbe KLH
complex, micrographs of the 26S proteasome displ&rger
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set members, twenty true particles, thirty falssitpes and
ten background images. Classification accuracieslifferent
SNRs (Table II).

TABLE Il
RESULTS OF THHTERATIVE CLASSIFIERPROCESSED ONSIMULATED PARTICLE
STACKS. PROCESSING WASREPEATED FORDIFFERENTSNRS TODETERMINE
THE PERFORMANCE UNDERVARYING CONDITIONS

SNR FPR FNR
0.5 0% 5%

0.1 2% 17%
0.01 13% 20%

B. Testing on Cryo-Electron Microscopy Data

1) Keyhole Limpet Hemocyanin

One hundred particles were interactively selectethfa set
of eight micrographs from the KLH dataset and wexeluded
from all further testing steps. A templatéor picking with the
improved correlation filter and a training set tbe iterative
classifier were generated from selected particRs. [Best

settings were manually adjusted to the followingfiguration:

1. The first 8 eigenimages were used for projectirgy th
particles into reduced space.

2. The training set was abstracted into 6 classes for
generating the classification references.

3. The cluster size was reduced frofidar: = 3 t0 sfend =
1.51n Sfstep=0.25

Here, we compared performance to an expert gekrate
ground truth (Table 1V). 51.3% of the automaticallgiected
particles were in agreement with the expert listtel
inspection determined that 31.8% were incomplete
components of the protein complex, contaminatiommaging
artifacts. Thus, 16.9% of the collected data we@S 2
Proteasomes that were not selected by the expgrty)-

TABLE IV
RESULTS OF THEAUTOMATED PARTICLE PICKER (15720PARTICLES)
COMPARED TO AGROUND TRUTH (18903PARTICLES) GENERATED BY AN

weighting coefficients of the three correlation huats were
determined to:

EXPERT
Overlag FPR FNR
Expert 51.3% 31.8% 48.7%

OLC =0.12[ FLCF +0.18 PSR+0.7Cl SOC

Tuning of the iterative classifier was carried ooanually
using only few of the KLH micrographs as a pre-sield
training set. An optimal configuration was foundainvay that:

V. DISCUSSION

An automatic particle selection algorithm was pnése in
this work, consisting of two main components: arpliaved
correlation filter and an iterative classifier. Ftne first
component, two novel approaches for peak shapeysimal

1. The first 5 eigenimages were used for projectirgy thextend the classical correlation.

particles into reduced space.

The optimal combination of the shape analysis nustand

2. The training set was abstracted into 3 classes fg?e cross correlation function was determined usirsgandard

generating the classification references.
3. The cluster size was reduced frofitar: = 3 t0 Sfend =
1.5in Sf;tep: 02

The performance of our algorithms was compared to K

interactively (Mouche) and to an automatically @dk
reference (Selexon) (Table III).

TABLE Ill
RESULTS FOR THEBENCHMARK DATASET KLH. RESULTS OF THEDEVELOPED
PARTICLE PICKER WERECOMPARED TO AINTERACTIVELY (MOUCHE) AND TO
AN AUTOMATICALLY PICKED REFERENCE(SELEXON) BY ANALYZING THE
RESPECTIVEFALSE POSITIVE AND FALSE NEGATIVE RATES

FPFR FNR

Mouche 35.7% 18.7%

Selexol 32.4% 19.6%
2) 26S Proteasome

A second set of particle picking tests was perfafmsing
the 26S proteasome data. This was carried out bgsihg an
appropriate template and training set, generated f600
manually selected particles. Optimal weighting bé tthree
methods were determined by the optimizer and atendiere:

OLC =0.34[ FLCF +0.09l PSR+0.57 SOC

For the 26S proteasome dataset, the iterative iftdass

International Scholarly and Scientific Research & Innovation 6(1) 2012 6

optimization algorithm. We found that this approauiproved
the fidelity of localizing protein complexes signdntly.

An iterative classifier further refined the seleati of
detected complexes by iteratively repeating the RDA the
-Means classification steps. Candidate particlegrew
represented in a reduced data space where they #lig
predefined clusters, which were previously, detagdiusing a
small training sets of “true” particles. Concludiye the
combination of enhanced correlation with iterative
classification and sorting of particles yields &bust and
adaptive particle picking method. The complete ok
relies only on a small training set of 100 to 1Q@@0ticles for
initialization that specifies expected positionstrofe particles
in the feature space. Thus, one major benefit isf tilaining
scheme is that no large training sets of truesefgarticles as
for Neural Networks or Support Vector Machines guired
[26]. Both methods turned out to be a critical ioy@ment
towards a reliable and robust localization strati&gyprotein
complexes in cryo-electron micrographs. Tests o€ th
algorithms developed were carried out on simulaed real-
world datasets.
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