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Abstract—Based on the classical algorithm LSQR for solv-
ing (unconstrained) LS problem, an iterative method is proposed
for the least-squares like-minimum-norm symmetric solution of
AXB+CY D=E. As the application of this algorithm, an iterative
method for the least-squares like-minimum-norm biymmetric solution
of AXB=E is also obtained. Numerical results are reported that show
the efficiency of the proposed methods.
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I. INTRODUCTION

DENOTED by Rm×n and SRn×n the set of m× n real
matrices and the set of n × n real symmetric matrices,

respectively. For any A ∈ Rm×n, R(A), AT , A†, ‖A‖2 and
‖A‖F present the range, transpose, Moore-Penrose generalized
inverse, Euclid norm and Frobenius norm, respectively. A⊗B
represents the Kronecker product of matrices A and B. For
A = (aij) ∈ Rn×n and a = (α1, α2, · · · , αn) ∈ Rn, diag(A)
and diag(a) represent the diagonal matrix with diagonal
elements a11, a22, · · · , ann and a1, a2, · · · , an, respectively.
The sub-vector consisting of from αth component to βth
component of xi is denoted by xα:β,i.

Let m,n,m1,m2 be four positive integers, and let E ∈
Rm×n, A ∈ Rm×m1 , B ∈ Rm1×n, C ∈ Rm×m2 , and D ∈
Rm2×n. We consider the least squares problem

min
X,Y

‖AXB + CY D − E‖F (1)

for X ∈ SRm1×m1 and Y ∈ SRm2×m2 . Its corresponding
linear matrix equation is

AXB + CY D = E. (2)

A matrix pair (X,Y ) is referred to as a minimum norm
solution if it minimizes

‖X‖2F + ‖Y ‖2F ,

and as a like-minimum norm solution if it minimizes

‖tril(X)‖2F + ‖tril(Y )‖2F ,
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where tril(X) represents extract lower triangular part of X ,
that is, if X = (xij) ∈ Rn×n, then

tril(X) =

⎛
⎜⎜⎜⎝

x11 0 · · · 0
x21 x22 · · · 0

...
...

. . .
...

xn1 xn2 · · · xnn

⎞
⎟⎟⎟⎠ .

Many results have been obtained about the matrix equation
(2). For example, Chu[1] gave the consistency conditions and
the minimum-norm solution by making use of the gener-
alized singular value decomposition (GSVD). Huang[2] and
Özgüler[3], respectively, gave the solvability conditions over
a simple Artinian ring and a principal ideal domain by using
the generalized inverse. However, we should point out that if
the matrices A,B,C,D, and E are experimentally occurring
in practice, they may not satisfy these solvability conditions
because of the inconsistency of the matrix equation (2). Hence,
we need to further study the least squares problem. For
unconstrained problem (1), Xu, Wei, and Zheng[4] gave its
solution by making use of the canonical correlation decom-
position (CCD). In addition, Shim and Chen[5] presented
its least-squares solution with the minimum norm by using
the singular value decomposition (SVD) and the GSVD. The
above methods, which can be called direct methods, have
some difficulties when the scale of (1) is very great. Therefore
iterative methods must be considered.

To our best knowledge, the method for the solution of (1)
is not still discussed. In this paper, we develop an efficient
iterative method for the least-squares solution of (1) with
the like-minimum norm. When (2) has symmetric solutions,
this method can get its like-minimum-norm symmetric
solution. In section 2, we will review the LSQR algorithm for
minx ‖Mx − f‖, which is numerically very reliable even if
M is ill-conditioned. Our algorithm for (1) will be proposed
in section 3. As its application, we will study the method for
the least-squares like-minimum-norm bisymmetric solution
of AXB = E in section 4. In section 5, two examples are
reported that show the efficiency of the proposed algorithms.

II. ALGORITHM LSQR

In the section, we briefly review the algorithm LSQR
prosed by Paige and Sauders[6] for solving the following lease
squares problem:

min
x∈Rn

‖Mx− f‖2 (3)
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with given M ∈ Rm×n and f ∈ Rm, whose normal equation
is

MTMx =MT f. (4)

Theoretically, LSQR converges within at most n iterations
if exact arithmetic could be performed, where n is the length
of x. In practice the iteration number of LSQR may be larger
than n because of the computational errors. It was shown in
[6] that LSQR is numerically more reliable even if M is ill-
conditioned.

We summarize the LSQR algorithm as follows.

Algorithm LSQR

(1)Initialization.
β1u1 = f, α1v1 = MTu1, h1 = v1, x0 = 0, ζ̄1 = β1, ρ̄1 =
α1.
(2)Iteration. For i = 1, 2, · · ·

(i) bidiagonalization
(a)βi+1ui+1 =Mvi − αiui
(b)αi+1vi+1 =MTui+1 − βi+1vi

(ii)construct and use Givens rotation
ρi =

√
ρ̄2i + β2

i+1

ci = ρ̄i/ρi, si = βi+1/ρi, θi+1 = siαi+1

ρ̄i+1 = −ciαi+1, ζi = ciζ̄i, ζ̄i+1 = siζ̄i
(iii) update x and h
xi = xi−1 + (ζi/ρi)hi
hi+1 = vi+1 − (θi+1/ρi)hi

(iv) check convergence.
It is well known that if the consistent system of linear

equations Mx = f has a solution x∗ ∈ R(MT ), then x∗

is the unique minimal norm solution of Mx = f . So, if
Eq.(4) has a solution x∗ ∈ R(MTM) = R(MT ), then x∗

is the minimum norm solution of (3). It is obvious that xk
generated by Algorithm LSQR belongs to R(MT ) and this
leads the following result.

Theorem 2.1. The solution generated by Algorithm LSQR is
the minimum norm solution of Eq.(3).

Remark 2.1. Theoretically, when βk+1 = 0 or αk+1 = 0 for
some k < min{m,n}, then recursions will stop. In both cases,
xk is the minimum norm least squares solution to Eq.(3).
Also notice that ‖MT (f − Mxk)‖2 = |αk+1ζ̄k+1ck| = 0
is monotonically decreasing when k is increasing. Also notice
that, at each step of the LSQR iteration, the main costs of
computations are two matrix-vector products.

Remark 2.2. During the iterative processing, because of the
round-off error, computed solution x̂k may make ‖MT (f −
Mx̂k)‖2 �= 0 even ‖MT (f −Mxk)‖2 = |αk+1ζ̄k+1ck| = 0.
Therefore we need to setup the stopping criteria to check the
correct k. Paige and Sauders [6] discuss several choices of the
stopping criteria. Sometimes we need to use restart strategy to
improve the accuracy. In the numerical experiments provided
in §5, we use |αk+1ζ̄k+1ck| < τ = 10−11 as the stopping
criterion. We observe that this stopping criterion works well.

III. THE MATRIX-FORM LSQR ALGORITHM FOR (1)
A symmetric matrix is uniquely determined by part of its

elements, namely some independent elements. For a matrix

X = (x1, x2, · · · , xn) ∈ Rn×n, we define

vec(X) =

⎛
⎜⎜⎜⎝

x1
x2
...
xn

⎞
⎟⎟⎟⎠ ∈ Rn2

, veci(X) =

⎛
⎜⎜⎜⎝

x1:n,1
x2:n,2

...
xnn

⎞
⎟⎟⎟⎠ ∈ RN ,

where N ≡ n(n + 1)/2. Obviously, there is an one to one
linear mapping from the long-vector space

vec(SRn×n) = {vec(X)|X ∈ SRn×n}

to the independent parameter space

veci(SRn×n) = {veci(X)|X ∈ SRn×n}.

Let us denote by F(n) the matrix that defines linear
mapping form veci(SRn×n) to vec(SRn×n),

X ∈ SRn×n, vec(X) = F(n)veci(X).

We call F(n) ∈ Rn2×N a symmetry constraint matrix of
degree n, which will be simply denoted by F if n can be
ignored without misunderstanding.

Now, we discuss the constrained problem (1), which is
equivalent to

min
ϕ

‖Mϕ− f‖2 (5)

with

M = ((BT ⊗A)F1, (D
T ⊗ C)F2) ∈ Rmn× (m1+1)m1+(n1+1)n1

2 ,

f = vec(E) ∈ Rmn, ϕ =

(
veci(X)
veci(Y )

)
∈ R (m1+1)m1+(n1+1)n1

2 ,

(6)
where F1 and F2 are the symmetry constraint matrices of
degree m1 and m2, respectively. So the normal equation of
(1) and (5) is

MTMϕ =MT vec(E). (7)

The following result will help us to deduce a matrix-form
LSQR method for (1).

Lemma 3.1.[10] Let U ∈ Rm×n and Z = ATUBT . Then for
the symmetry constraint F1,

((BT ⊗A)F1)
T vec(U) = veci(Z + ZT − diag(Z)).

Next we will apply LSQR on the LS problems (5). The
vector iterations of LSQR will be rewritten into matrix form
so that the Kronecker product can be released. To this end, it is
required to transform the vector v and u in Algorithm LSQR
back to the matrix forms. So we must transform v = MTu
and u =Mv back to the matrix forms. Notice that we do not
want to construct the matrix M explicitly.

Let u = vec(U) ∈ Rmn with U ∈ Rm×n, v =

(
v1
v2

)
∈

R (m1+1)m1+(n1+1)n1
2 ,where v1 = veci(V1) and v2 = veci(V2)
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with V1 ∈ SRm1×m1 and V2 ∈ Rn1×n1 . Then

U = matr(u) = matr(Mv)

= matr

(
((BT ⊗A)F1, (D

T ⊗ C)F2)

(
v1
v2

))

= matr((BT ⊗A)F1veci(V1) + (DT ⊗ C)F2veci(V2))

= matr((BT ⊗A)vec(V1) + (DT ⊗ C)vec(V2))

= matr(vec(AV1B) + vec(CV2D))

= AV1B + CV2D,

v =

(
v1
v2

)
= MTu =

(
((BT ⊗A)F1)

T vec(U)
((DT ⊗ C)F2)

Tvec(U)

)

=

(
veci(Z1 + ZT

1 − diag(Z1))
veci(Z2 + ZT

2 − diag(Z2))

)

where
Z1 = ATUBT , Z2 = CTUDT .

So v1 and v2 can be formally transformed to symmetric
matrices:

V1 = Z1 + ZT
1 − diag(Z1), V2 = Z2 + ZT

2 − diag(Z2).

Notice that α in Algorithm LSQR should be

‖v‖2 =

∥∥∥∥
(

veci(Z1 + ZT
1 − diag(Z1))

veci(Z2 + ZT
2 − diag(Z2))

)∥∥∥∥
2

=
√

‖veci(V1)‖2F + ‖veci(V2)‖2F .
Next, we give the algorithm for the like-minimum-norm

solution of (1).

Algorithm [X,Y ] = LSQRM (A,B,C,D,E)

(1)Initialization.
X0 = 0(∈ SRm1×n1), Y0 = 0(∈ SRm2×n2),
β1 = ‖E‖F , U1 = E/β1,
Z1 = ATU1B

T , Z2 = CTUDT ,
V̄

(1)
1 = Z1 + ZT

1 − diag(Z1),

V̄
(2)
1 = Z2 + ZT

2 − diag(Z2),

α1 = (‖veci(V̄ (1)
1 )‖2F + ‖veci(V̄ (2)

1 )‖2F )1/2,
V

(1)
1 = V̄

(1)
1 /α1, V

(2)
1 = V̄

(2)
1 /α1,

H
(1)
1 = V

(1)
1 , H

(2)
1 = V

(2)
1 , ξ̄1 = β1, ρ̄1 = α1.

(2)Iteration. For i = 1, 2, · · ·
Ūi+1 = AV

(1)
i B + CV

(2)
i D − αiUi,

βi+1 = ‖Ūi+1‖F , Ui+1 = Ūi+1/βi+1,
Z1 = ATUi+1B

T , Z2 = CTUi+1D
T ,

V̄
(1)
i+1 = Z1 + ZT

1 − diag(Z1)− βi+1V
(1)
i ,

V̄
(2)
i+1 = Z2 + ZT

2 − diag(Z2)− βi+1V
(2)
i ,

α1 = (‖veci(V̄ (1)
i+1)‖2F + ‖veci(V̄ (2)

i+1)‖2F )1/2,
V

(1)
i+1 = V̄

(1)
i+1/αi+1, V

(2)
i+1 = V̄

(2)
i+1/αi+1,

ρi =
√
ρ̄2i + β2

i+1, ci = ρ̄i/ρi,

si = βi+1/ρi, θi+1 = siαi+1,
ρ̄i+1 = −ciαi+1, ζi = ciζ̄i, ζ̄i+1 = siζ̄i,

Xi = Xi−1 + (ξi/ρi)H
(1)
i , Yi = Yi−1 + (ξi/ρi)H

(2)
i ,

H
(1)
i+1 = V

(1)
i+1−(θi/ρi)H

(1)
i , H

(2)
i+1 = V

(2)
i+1−(θi/ρi)H

(2)
i .

(3)check convergence.

IV. THE BISYMMETRIC SOLUTION OF minX ‖AXB − E‖F
As the application of the method proposed in section 3,

it is easy to find the iterative method for the bisymmetric
solution of minX ‖AXB−E‖F . First, we give the definition
of bisymmetric matrices.

Definition 4.1. Let A = (aij) ∈ Rn×n. If A satisfies

aij = aji = an+1−i,n+1−j , i, j = 1, 2, · · · , n,
then A is called an n× n centrosymmetric matrix; the set of
all centrosymmetric matrices is denoted by BSRn×n.

The bisymmetric and anti-bisymmetric matrices play an
important role in many areas. [8] and [9] studied respectively
the solution and the least squares bisymmetric solution of
ATXA = D using GSVD and CCD. In this section we will
consider the following problem:

min
X∈BSRn×n

‖AXB − E‖F , (8)

with A ∈ Rm×n, B ∈ Rn×p and E ∈ Rm×p.
We first characterize the set of all n × n bisymmetric

matrices. Let

K =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
2

(
Ik Ik
Jk −Jk

)
, n = 2k,

1√
2

⎛
⎝ Ik 0 Ik

0
√
2 0

Jk 0 −Jk

⎞
⎠ , n = 2k + 1,

where Ik is the k × k identity matrix and Jn is the n × n
anti-identity natrix, i.e. Jn has 1 on the anti-diagonal and
zeros elsewhere. Clearly K is orthogonal for all n. The matrix
K plays an important role in analyzing the properties of
bisymmetric matrices. In particular, we have the following
splitting of bisymmetric matrices into smaller submatrices
using K.

Lemma 4.1.[8] Let BSRn×n and k be the set of all bisym-
metric matrices in Rn×n and the largest integer less than or
equal to n/2, respectively. Then

BSRn×n =

{
K

(
Q 0
0 R

)
KT

∣∣∣∣Q ∈ SR(n−k)×(n−k), R ∈ SRk×k

}

It follows form Lemma 4.1 that the problem (8) is equivalent
to the problem

min
G1∈SR(n−k)×(n−k)

G2∈SRk×k

‖A1G1B1 +A2G2B2 − E‖F (9)

with corresponding partition

AKn = [A1, A2] and KT
nB =

(
B1

B2

)
. (10)

Now we can give the algorithm for the like-minimum-norm
solution of (8) as follows:

Algorithm X = LSQRB(A,B,E)

(1).Input A,B,E and obtain A1, B1, A2, B2 from (10);

(2).[G1, G2] = LSQRM (A1, B1, A2, B2, E);

(3).Output X = Kn

(
G1 0
0 G2

)
KT

n .
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V. NUMERICAL EXAMPLES

In this section, we present some numerical examples to
illustrate the efficiency of our algorithms.

Example 1. Find the like-minimum-norm symmetric solution
of (1). Let

A =

(
hilb(4) zeros(4, 3)
eye(4) ones(4, 3)

)
,

B =

(
ones(3, 5) zeros(3, 4)
zeros(4, 5) pascal(4)

)
,

C =

(
magic(5)
ones(3, 4)

)
,

D =

(
hankel(1 : 4) zeros(4, 5)
zeros(1, 4) zeros(1, 5)

)
,

E1 =
(
toeplitz(1 : 8) ones(8, 1)

)
,

X = ones(7, 7), Y = zeros(5, 5), E2 = AXB + CY D

such that AXB + CY D = E1 has no solution and
AXB + CY D = E2 has symmetric solutions, where
hilb(n), pascal(n) and magic(n) denote Hilbert matrix, Pas-
cal matrix and Magic matrix of order n, respectively; and
toeplitz(1 : n) and hankel(1 : n) denote Toeplitz matrix and
Hankel matrix of order n, respectively, with their first rows
being (1, 2, · · · , n).

For M and ϕ defined by (6), we define
δk ≡ ‖MTMϕk −MT f‖2 = |αkζk+1ck|,
ηk ≡ ‖AXkB + CYkD − E1‖F = ‖Mϕk − f‖2 = |ζ̄k+1|.

Fig.1 plots the functions of the error δk and ηk for Algo-
rithm LSQRM and show that Algorithm LSQRM is very
efficient for this example.

0 50 100 150 200 250 300
−14

−12

−10

−8

−6

−4

−2

0

2

4

k

log10(η
k
)

log10(δ
k
)

Fig. 1. The error of the computed solutions by Algorithm LSQRM

The computed solution (X246, Y246) of AXB+CY D = E2

using 246 iterations has the error

η246 = 10−13.0527,

and satisfies ‖tril(X246)‖2F + ‖tril(Y246)‖2F = 26.8000, and
‖X246‖2F + ‖Y246‖2F = 50.4400.
‖X‖2F + ‖Y ‖2F = 49 and ‖tril(X)‖2F + ‖tril(Y )‖2F = 28

imply that (X246, Y246) is not the minimum-norm symmetric
solution, but the like-minimum-norm symmetric solution.

Example 2. Find the minimum-norm of (8). Let

A =

(
hilb(4) zeros(4, 1)
eye(4) ones(4, 1)

)
,

B =

(
ones(1, 5) zeros(3, 4)
zeros(1, 5) pascal(4)

)
,

E =
(
toeplitz(1 : 8) ones(8, 1)

)
.

Algorithm LSQRC is very efficient for this example, too.
The computed minimum norm solution using 18 iterations is
X18 =⎛
⎜⎜⎜⎜⎝

−0.3573 0.5120 0.5027 −1.4904 0.8402
0.5120 −0.0697 −2.4868 4.2716 −1.4904
0.5027 −2.4868 5.1777 −2.4868 0.5027
−1.4904 4.2716 −2.4868 −0.0697 0.5120
0.8402 −1.4904 0.5027 0.5120 −0.3573

⎞
⎟⎟⎟⎟⎠

with the error

δk = ‖MTMϕk −MT f‖2 = 10−16.0575,

where ϕ =

(
veci(G1)
veci(G2)

)
and M = ((BT

1 ⊗ A1)F1, (B
T
2 ⊗

A2)F2) with A1, A2, B1, B2, defined by (10).
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