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Abstract—In this paper, we discuss semiconvergence of the al-
ternating iterative methods for solving singular systems. The semi-
convergence theories for the alternating methods are established
when the coefficient matrix is a singular matrix. Furthermore, the
corresponding comparison theorems are obtained.
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I. INTRODUCTION

CONSIDER a linear system

Ax = b, (1)

where A ∈ Rn×n is a singular matrix, x ∈ Rn is an unknown
vector and b ∈ Rn is a given vector. We assume that the
system (1) is solvable, i.e., it has at least a solution.

It is customary to consider a splitting A = M −N , where
M is a nonsingular matrix, then iterative formula for solving
the system (1) can be described as follows

x(k+1) = Tx(k) +M−1b, k = 0, 1, 2, · · · , (2)

where T =M−1N is the iterative matrix. In 1997, Benzi and
Szyld [1] have introduced the following general alternating
method.

The alternating iterative method. If we consider two split-
tings

A =M −N = P −Q, (3)

we obtain the general class of the iterative methods of the
form

x(k+1/2) =M−1Nx(k) +M−1b
x(k+1) = P−1Qx(k+1/2) + P−1b

}
for k = 0, 1, 2, · · · .

(4)
Let us eliminating x(k+1/2) from (4) and obtain the iterative
process (see [1])

x(k+1) = P−1QM−1Nx(k) + P−1(QM−1 + I)b.

Let

R = P−1(QM−1 + I), T = P−1QM−1N, (5)

then
x(k+1) = Tx(k) +Rb, (6)

where T = I −RA.
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It is well-known that iteration method (2) converges to the
unique solution of linear system with nonsingular coefficient
matrices if and only if ρ(T ) < 1, where ρ(T ) is the spectral
radius of the iteration matrix T . However, for the singular
systems we have ρ(T ) = 1, so that we can only require the
semiconvergence of the iterative method (2), which means that
for every x(0) the sequence defined by (2) converges to a
solution of system (1).

From the convergence and comparison results introduced
by Benzi and Szyld [1] for P-regular splittings of a symmetric
positive definite matrix and weak nonnegative splittings of the
first type of a monotone matrix, many authors such as Young
and Kincaid [3], Marchuk [4], Climent and Perea [5], [6],
Wang and Huang [7] have established convergence theories
for the alternating method when the coefficient matrix is an H-
matrix or a monotone matrix. Recently, the investigations for
singular linear systems have arisen attentions of many scien-
tists. For example, Song [8] establish some semiconvergence
results for solving singular linear systems with singular M-
matrix. Huang and Song [10] have proved semiconvergence of
the block AOR method for solving singular linear systems with
P-cyclic matrices. Wang [19] study the semiconvergence of
two-stage iterative methods for solving nonsymmetric singular
linear systems. Approaches different from the those used in
[8], [10], [19] will be used in this paper. We will study
the semiconvergence of the alternating method for solving
the singular linear systems. Furthermore, we will present the
comparison theorems for the alternating iterative methods with
singular coefficient matrices.

II. CONCLUSION

A. Notations and preliminaries

For convenience we shall now briefly explain some of the
notations and preliminaries used in the next sections.

As usual, a square matrix T is said to be convergent if
limj→∞ T k = 0 and semiconvergent if limj→∞ T k exists. In
the meantime, iteration (2) is said to be semiconvergent if the
iteration matrix T is semiconvergent(see [8], [9], [10]).

We denote the spectrum of T by λ(T ). Moreover,

ϑ(T ) ≡ max {|μ| |μ ∈ λ(T ), μ �= 1} .
In addition, index(A) denotes the index of the matrix A,
that is defined as the smallest nonnegative integer k such that
rank(A(k+1)) = rank(A(k)).

Since the Drazin inverse is important tools for singular
linear system analysis, we state the definitions as follows.
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Definition 2.1.([11]). For every matrix A, index(A) = k,
the Drazin inverse AD satisfies the following conditions

ADAAD = AD, AAD = ADA, Ak+1AD = Ak.

If A is a nonsingular matrix, then AD = A−1.

In the following definition, we present the different types
of splittings that appear in this papers [6], [9], [12], [13], [14].

Definition 2.2. Let A ∈ Rn×n, a splitting of A is a pair of
matrices M,N such that M is nonsingular and A =M −N .
The splitting is called

• Regular if M−1 ≥ 0 and N ≥ 0.
• Nonnegative if M−1 ≥ 0, M−1N ≥ 0 and NM−1 ≥ 0.
• Weak nonnegative of the first type if M−1 ≥ 0 and

M−1N ≥ 0; Weak nonnegative of the second type if
M−1 ≥ 0 and NM−1 ≥ 0.

We denote

T =M−1N, K = (I − T )(I − T )D,

G = NM−1, L = (I −G)D(I −G).

Definition 2.3. Let A ∈ Rn×n. Assume that the splitting
A =M −N satisfies

index(I − T ) ≤ 1, index(I −G) ≤ 1.

Then the splitting is called
• Quasi-regular if M−1 ≥ 0 and NK ≥ 0.
• Quasi-nonnegative if M−1 ≥ 0, M−1NK ≥ 0 and

LNM−1 ≥ 0.
• Weak quasi-nonnegative of the first type if M−1 ≥ 0 and

M−1NK ≥ 0; Weak quasi-nonnegative of the second type if
M−1 ≥ 0 and LNM−1 ≥ 0.

Clearly, if index(I − T ) = 0 (respectively,
index(I − G) = 0), then K = I (respectively, L = I)
and the concepts in Definition 2.3 concord with the
corresponding ones in Definition 2.2.

We present several lemmas that will be used.

Lemma 2.1. (Theorem 2.3.1 of [15]). Iterative method
(2) semiconvergence ⇐⇒ The following two conditions are
satisfied:
• ϑ(T ) < 1,
• index(I − T ) ≤ 1.

Lemma 2.2. ([16]). If the splitting A = M − N satisfies
index(I − T ) ≤ 1, then ϑ(T ) = ρ(TK).

Denote

Â =M −NK, Â′ =M − LN.

Then in the case when index(I−T ) ≤ 1 or index(I−G) ≤ 1
we have

Â−1 = (I − TK)−1M−1, Â′−1
=M−1(I − LG)−1.

Lemma 2.3. (Theorem 2.4 of [9]). Let A = M − N be a
weak quasi-nonnegative of the first type . Then the following
statements are equivalent

• (I − TK)−1 ≥ 0.
• T is semiconvergent.

Lemma 2.4. Let A =M −N be a weak quasi-nonnegative
of the second type . Then the following statements are equiv-
alent

• (I − LG)−1 ≥ 0.
• G is semiconvergent.

Lemma 2.5. (Lemma 3 of [5]). Let A be a nonsingular ma-
trix. For the splitting (3), consider matrix S = QP−1NM−1,
then

• S = ATA−1, where matrix T is defined by (5), and
consequently, ρ(S) = ρ(T ).

• If ρ(T ) < 1, the matrix T and S induce the same
splitting A = B − C of A.

Lemma 2.6. ([16]). Let A and T be square matrices such
that A and I−T are nonsingular. Then, there exists a unique
pair of matrices (B,C), such that B is nonsingular, T =
B−1C and A = B − C. The matrices are B = A(I − T )−1

and C = B −A.

B. Semiconvergence

In this section, we will prove the semiconvergence of the
classical alternating iterations when the coefficient matrix A
is a singular matrix.

Lemma 3.1 Let A = M − N = P − Q,
index(I − M−1N) ≤ 1, index(I − P−1Q) ≤ 1
and Â = M − NK1, Â′ = P − QK2, where K1 =
(I−M−1N)(I−M−1N)D, K2 = (I−P−1Q)(I−P−1Q)D,
then Â = Â′.

Proof. Using index(I −M−1N) ≤ 1, we have

(I −M−1N)K1 = (I −M−1N)

and

Â = M −NK1

= M +M(I −M−1N)−MK1

= A+M(I −K1).

Since A =M −N = P −Q, we know

(I −M−1N) =M−1P (I − P−1Q).

Using the definition of Drazin inverse, we have

I −K1 =M−1P (I −K2).

By Â = M − NK1 and Â′ = P − QK2, it is easy to prove
that Â = Â′.

We have the following conclusion similar to that obtained
in Lemma 3.1.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:3, 2013 

415International Scholarly and Scientific Research & Innovation 7(3) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
3,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
69

86
.p

df



Lemma 3.2 Let A = M − N = P − Q.
index(I − NM−1) ≤ 1, index(I − QP−1) ≤ 1
and Â = M − L1N , Â′ = P − L2Q, where L1 =
(I−NM−1)D(I−NM−1), L2 = (I−QP−1)D(I−QP−1),
then Â = Â′.

Theorem 3.1. Let A be a singular matrix, A =M −N or
A = P −Q be semiconvergence splitting, index(I − T ) ≤ 1.
Then T = P−1QM−1N is semiconvergence matrix if one of
the following conditions is satisfied.

• A = M − N = P − Q are weak quasi-nonnegative
splittings of the first type and index(I − M−1N) ≤ 1,
index(I − P−1Q) ≤ 1.

• A = M − N = P − Q are weak quasi-nonnegative
splittings of the second type and index(I − NM−1) ≤ 1,
index(I −QP−1) ≤ 1.

Furthermore, the splitting A = B − C induced by T is
weak quasi-nonnegative of the same type.

Proof. We will show that ρ(TK) < 1.

(i) From Lemma 3.1, we note

Â =M −NK1 = P −QK2, (7)

where
K1 = (I −M−1N)(I −M−1N)D

and
K2 = (I − P−1Q)(I − P−1Q)D.

If the splittings (3) are weak quasi-nonnegative of the first
type, then

M−1 ≥ 0, P−1 ≥ 0, M−1NK1 ≥ 0, P−1QK2 ≥ 0.

It is shown that the splittings (7) are weak nonnegative of the
first type of Â.

In order to prove the conclusion, let’s assume that A =
M −N (or A = P −Q) is semiconvergence. By Lemma 2.3,
we have

(I −M−1NK1)
−1 ≥ 0,

and
Â−1 = (I −M−1NK1)

−1M−1 ≥ 0.

From Lemma 2.6, we obtain that

TK = P−1QK2M
−1NK1 (K = (I − T )(I − T )D)

is the iterative matrix of the classical alternating methods
induced by (7). Clearly,

TK = P−1QK2M
−1NK1

= (I − P−1Â)(I −M−1Â)

= I − P−1Â−M−1Â+ P−1ÂM−1Â,

then

(I − TK)Â−1 = P−1 +M−1 − P−1AM−1

= P−1 + (I − P−1Â)M−1

= P−1 + P−1QK2M
−1.

Since the splittings (7) are weak nonnegative of the first type,
it follows that

TK ≥ 0, (I − TK)Â−1 ≥ 0.

Hence, for every nonnegative integer m, we have

0 ≤ (I + TK + (TK)2 + · · ·+ (TK)m)(I − TK)Â−1

= (I − (TK)m+1)Â−1 ≤ Â−1.

Therefore, lim
m→∞(TK)m = 0(see, e.g.,[17]). Furtherore,

ρ(TK) < 1.

By Lemma 2.2 we know that ϑ(T ) = ρ(TK) < 1. So, T is
semiconvergence.

(ii) Now, we assume that the splittings (3) are weak quasi-
nonegative of the second type. By Lemma 3.2, we note

Â =M − L1N = P − L2Q, (8)

where L1 = (I − NM−1)D(I − NM−1) and L2 = (I −
QP−1)D(I − QP−1). If the splittings (3) are weak quasi-
nonnegative of the second type, then

M−1 ≥ 0, P−1 ≥ 0, L1NM
−1 ≥ 0, L2QP

−1 ≥ 0.

It is shown that the splittings (8) are weak nonnegative of the
second type of Â.

In order to prove the conclusion, let’s assume that A =
M −N (or A = P −Q) is semiconvergence. By Lemma 2.4,
we have

(I − L1NM
−1)−1 ≥ 0,

then

Â−1 ≥ 0, LS = L2QP
−1L1NM

−1 ≥ 0,

and

Â−1(I − LS) = Â−1(I − L2QP
−1L1NM

−1)

= Â−1[I − (I − ÂP−1)(I − ÂM−1)]

= Â−1[ÂM−1 + ÂP−1 − ÂP−1ÂM−1]

= M−1 + P−1 − P−1ÂM−1

= M−1 + P−1(I − ÂM−1)

= M−1 + P−1L1NM
−1 ≥ 0,

whereL = (I − S)D(I − S).

For every nonnegative integer m, we have

0 ≤ Â−1(I − LS)(I + LS + (LS)2 + · · ·+ (LS)m)

= Â−1(I − (LS)m+1) ≤ Â−1,

then lim
m→∞(LS)m = 0 and ρ(LS) < 1.

According to Lemma 2.5, we know that ρ(LS) = ρ(TE)
and matrix LS and TK induce the same splitting. So we
have ρ(TK) < 1 and T is semiconvergence.

Let Â = B−CK be the unique splitting induced by TK =
P−1QK2M

−1NK1, Using Lemma 2.6 and (7), we have

B−1 = (I − TK)Â−1 ≥ 0, B−1CK = TK ≥ 0. (9)
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Thus, Â = B −CK is weak nonnegative splitting of the first
type and A = B − C is weak quasi-nonnegative splitting of
the first type.

Let Â = B−LC be the unique splitting induced by LS =
L2QP

−1L1NM
−1, Applying Lemma 2.6 and (7), we have

B−1 = Â−1(I − LS) ≥ 0, LCB−1 = LS ≥ 0. (10)

Thus, Â = B−LC is weak nonnegative splitting of the second
type and A = B − C is weak quasi-nonnegative splitting of
the second type.

Therefore, A = B − C and A =M −N = P −Q are the
same type of splittings. It completes the proof.

Remark 3.1. Theorem 3.1 can be extended to alternating
schemes involving more than two splittings of the coefficient
matrix A. For example, considering three splittings A =
M − N = P − Q = R − S and corresponding three-step
alternating procedure, we can study the semiconvergence of
the iteration matrix T = R−1SP−1QM−1N to extend the
alternating iteration methods.

C. A comparison theorem

We know that the semiconvergence of the two splittings
A = M − N = P − Q is not to insure the semiconvergence
of the classical alternating iteration (4). Even if the classical
alternating iteration semiconverges, there is no guarantee that
it will converge faster than either of the two basic splittings.
Hence, we will give the following comparison theorem.

Theorem 4.1. Let A be a singular matrix and A =M −N
be quasi-regular semiconvergence splitting, index(I−T ) ≤ 1.
Then ϑ(T ) of T = P−1QM−1N holds

ϑ(T ) ≤ ϑ(M−1N) < 1 (11)

if one of the following conditions is satisfied.
• A = P −Q are weak quasi-nonnegative splittings of the

first type and index(I−M−1N) ≤ 1, index(I−P−1Q) ≤ 1.
• A = P − Q are weak quasi-nonnegative splittings

of the second type and index(I − NM−1) ≤ 1,
index(I −QP−1) ≤ 1.

Proof. From Lemma 2.6, let T be the iteration matrix
corresponding to the induced splitting A = B − C. Noting

Â = B − CK =M −NK1 = P −QK2,

and assuming A = P − Q be a weak quasi-nonnegative
splitting of the first type, from Theorem 3.1, we know that
A = B − C is a weak quasi-nonnegative splitting of the first
type. It is shown that Â = B − CK and Â = P − QK2 are
weak nonnegative splitting of the first type. We have

B−1 =M−1 + P−1NK1M
−1 ≥M−1.

We can now apply the comparison theorem for weak regular
splittings due to Elsner [18] to get

ρ(TK) ≤ ρ(M−1NK1) < 1,

thus
ϑ(T ) ≤ ϑ(M−1N) < 1.

Similarly, if A = P − Q is a weak quasi-nonnegative
splitting of the second type, we obtain

ρ(LS) ≤ ρ(M−1NK1) < 1,

thus
ϑ(T ) ≤ ϑ(M−1N) < 1.

In a similar way we obtain the result of Theorem 4.2.

Theorem 4.2. Let A be a singular matrix and A = P −Q
be quasi-regular semiconvergence splitting, index(I−T ) ≤ 1.
Then ϑ(T ) of T = P−1QM−1N holds

ϑ(T ) ≤ ϑ(P−1Q) < 1 (12)

if one of the following conditions is satisfied.
• A =M −N are weak quasi-nonnegative splittings of the

first type and index(I−M−1N) ≤ 1, index(I−P−1Q) ≤ 1.
• A = M − N are weak quasi-nonnegative splittings

of the second type and index(I − NM−1) ≤ 1,
index(I −QP−1) ≤ 1.

Remark 3.1. From Theorem 4.1 and 4.2, we know that
under appropriate conditions the asymptotic rate of semicon-
vergence of the iteration (4) is at least as good as the rate of
semiconvergence of the fastest of the two basic iterations, i.e.,

ϑ(T ) ≤ min(ϑ(M−1N), ϑ(P−1Q)).

In short, the alternating between two splittings can be advan-
tageous over iterating with a single splitting.
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