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Abstract—In this paper, we present a preconditioned AOR-type
iterative method for solving the linear systems Ax = b, where A is a
Z-matrix. And give some comparison theorems to show that the rate
of convergence of the preconditioned AOR-type iterative method is
faster than the rate of convergence of the AOR-type iterative method.
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I. INTRODUCTION

FOR solving linear system

Ax = b, (1)

where A is an n × n square matrix, and x and b are n-
dimensional vectors, the basic iterative method is

Mxk+1 = Nxk + b, k = 0, 1, · · · , (2)

where A = M − N and M is nonsingular. Thus (2) can be
written as

xk+1 = Txk + c, k = 0, 1, ...,

where T = M−1N , c = M−1b.
Assuming A has unit diagonal entries and let A = I−L−U

where I is the identity matrix, −L and −U are strictly lower
and strictly upper triangular parts of A, respectively. Then,
(I) the iteration matrix of the classical Gauss-Seidel-type
method is given by

T = (I − L)−1U (3)

(II) the iteration matrix of the classical SOR-type method is
given by

Lr = (I − rL)−1[(1 − r)I + rU ] (4)

where r �= 0 is a parameter called the relaxation parameter.
(III) the iteration matrix of the classical AOR-type method is
given by

Lr,w = (I − L)−1[(1 − w)I + (w − r)L+ wU ] (5)

where w and r are real parameters and w �= 0.
Transform the original system (1) into the preconditioned

form
PAx = Pb.

Then, we can define the basic iterative scheme:

Mpx
k+1 = Npx

k + Pb, k = 0, 1, . . . ,

Guangbin Wang and Ning Zhang are with the Department of Mathematics,
Qingdao University of Science and Technology, Qingdao, 266061, China.

Fuping Tan is with the Department of Mathematics, Shanghai University,
Shanghai, 200444, China.

+ Corresponding author. E-mail: wguangbin750828@sina.com. This work
was supported by Natural Science Fund of Shandong Province of China
(Y2008A13).

where PA = Mp − Np and Mp is nonsingular. Thus the
equation above can also be written as

xk+1 = Txk + c, k = 0, 1, . . . ,

where T = M−1
p Np, c = M−1

p Pb.

In paper [1], Meijun Wu et al. presented the preconditioned
AOR-type iterative method with

Pα = I + Sα

=

⎛
⎜⎜⎜⎜⎜⎝

1 −α1a12

1 −α2a23

. . . . . .
1 −αn−1an−1,n

1

⎞
⎟⎟⎟⎟⎟⎠

(6)

and αi(i = 1, 2, · · · , n−1) are nonnegative real numbers, and
obtained some comparison results.

In this paper, we will present the preconditioned AOR-type
iterative method with

Pβ = I +Kβ

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−β1a12 1

−β2a23
. . .
. . . 1

−βn−1an−1,n 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

and βi( i = 1, 2, · · · , n− 1) are nonnegative real numbers.
In the following, we consider three splittings for Ã:

Ã =

⎧⎨
⎩

(D̃ − L̃) − Ũ
1
r (D̃ − rL̃) − 1

r [(1 − r)D̃ + rŨ ]
D̃−rL̃

w − 1
w [(1 − w)D̃ + (w − r)L̃+ wŨ ]

(8)

where D̃ , −L̃ and −Ũ are diagonal, strictly lower and strictly
upper triangular parts of Ã, respectively.

In view of (8), the iteration matrices associated with Ã are:

T̃ = (D̃ − L̃)−1Ũ (9)

L̃r = (D̃ − rL̃)−1[(1 − r)D̃ + rŨ ] (10)

L̃r,w = (D̃ − rL̃)−1[(1 − w)D̃ + (w − r)L̃+ wŨ ] (11)

In this paper, we will discuss the preconditioned iterative
methods with the preconditioner Pβ for solving Z-matrices
linear systems and present comparison theorems of these
methods.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:4, No:7, 2010 

918International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:4
, N

o:
7,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/6
94

0.
pd

f



II. COMPARISON RESULTS OF PRECONDITIONED
AOR-TYPE METHODS WITH PRECONDITIONER Pβ

We need the following definitions and results.
Definition 2.1 (Young [3]). A is a Z-matrix if aij ≤ 0,

for all i, j = 1, 2, . . . n, i �= j.
Lemma 2.2 (Young [3]). Let A ≥ 0 be an irreducible

matrix. Then
(1) A has a positive real eigenvalue equals to its spectral

radius;
(2) To ρ(A) there corresponds an eigenvector x > 0;
(3) ρ(A) is a simple eigenvalue of A.
Lemma 2.3 (Varga [4]). Let A be a nonnegative matrix.

Then
(1) If αx ≤ Ax for some nonnegative vector x, x �= 0, then

α ≤ ρ(A);
(2) If Ax ≤ βx for some positive vector x, then ρ(A) ≤ β.

Moreover, if A is irreducible and if 0 �= αx ≤ Ax ≤ βx for
some nonnegative vector x, then α ≤ ρ(A) ≤ β and x is a
positive vector.

Lemma 2.4 ([5]). Let A = M − N be an M-splitting of
A. Then ρ(M−1N) < 1 if and only if A is a nonsingular
M-matrix.

Lemma 2.5 ([6]). Let A be a Z-matrix. Then A is a
nonsingular M-matrix if and only if there is a positive vector
x such that Ax ≥ 0.

For the linear system (1), we consider its preconditioned
form

PβAx = Pβb

with the preconditioner Pβ = I +Kβ in this section.
We apply the AOR method to it and have the corresponding

preconditioned AOR iteration matrix

L̂r,w = [Dβ −rLβ ]−1[(1−w)Dβ +(w−r)Lβ +wUβ ], (12)

where Dβ , −Lβ and −Uβ are diagonal, strictly lower and
strictly upper triangular parts of Aβ = PβA, respectively.

Now we give the main results as follows.
Theorem 2.1 Let A = I−L−U ∈ Rn×n be a nonsingular

Z-matrix, Lr,wand L̂r,w be the iteration matrices given by (5)
and (12). Assume that 0 < r < w < 1, and 0 < βi < 1,
i = 1, 2, . . . , n− 1.

(I) If ρ(Lr,w) < 1, then

ρ(L̂r,w) ≤ ρ(Lr,w) < 1

(II) Let A be irreducible. Assume that

ai,i−1ai−1,i < 1, i = 2, . . . , n.

then
(1) ρ(L̂r,w) > ρ(Lr,w) if ρ(Lr,w) > 1;
(2) ρ(L̂r,w) = ρ(Lr,w) if ρ(Lr,w) = 1;
(3) ρ(L̂r,w) < ρ(Lr,w) if ρ(Lr,w) < 1.
Proof. Let

M = 1
w (I − rL)

N = 1
w [(1 − w)I + (w − r)L+ wU ]

Eβ = 1
w (Dβ − rLβ)

Fβ = 1
w [(1 − w)Dβ + (w − r)Lβ + wUβ ]

Mβ = 1
w (I +Kβ)(I − rL)

Nβ = 1
w (I +Kβ)[(1 − w)I + (w − r)L+ wU ]

Then, we have

A = M −N, Aβ = Eβ − Fβ = Mβ −Nβ

(I) Since A is a nonsingular Z-matrix and 0 < r < w < 1,
w �= 0, it is clear that M = 1

w (I − rL) is a nonsingular
M-matrix and the splitting

A = M −N =
1
w

(I − rL)− 1
w

[(1−w)I + (w− r)L+wU ]

is an M-splitting. Since ρ(Lr,w) < 1, it follows from Lemma
2.4 that A is a nonsingular M-matrix. Then by Lemma 2.5,
there is a positive vector x such that Ax ≥ 0 ,
so Aβx = (I +Kβ)Ax ≥ 0.

By Lemma 2.5, Aβ is also a nonsingular M-matrix.
Obviously, we can get Dβ is an positive diagonal matrix,

and Lβ is nonnegative. From r > 0 we know that Eβ is a Z-
matrix. Since rD−1

β Lβ ≥ 0 is a strictly lower triangular matrix
so that ρ(rD−1

β Lβ) = 0 < 1, we have (I − rD−1
β Lβ)−1 ≥ 0.

Then
Eβ = (I − rD−1

β Lβ)−1D−1
β ≥ 0

Hence Eβ is an nonsingular M-matrix.
By Fβ ≥ 0 we can prove that Aβ = Eβ − Fβ is an M-

splitting. It follows from Lemma 2.4 that

ρ(L̂r,w) = ρ(E−1
β Fβ) < 1.

Since Aβ = Eβ −Fβ and A = M −N are both M-splitting
and M−1

β Nβ = M−1N , two splittings Aβ = Eβ − Fβ =
Mβ −Nβ are nonnegative.

On the other hand,

Mβ − Eβ

= 1
w (I +Kβ)(I − rL) − 1

w (Dβ − rLβ)
= 1

w (I +Kβ − rL− rKβL−Dβ + rLβ)
= 1

w (I +Kβ − rL− rKβL−Dβ

+ r(Dβ − I + L−Kβ +KβL))
= 1

w (I +Kβ − rL− rKβL−Dβ

+ rDβ − rI + rL− rKβ + rKβL)
= 1

w (I +Kβ −Dβ + rDβ − rI − rKβ)
= 1

w [(I − r)(I −Dβ) + (1 − r)Kβ ]
≥ 0

which implies

A−1
β Mβ −A−1

β Eβ = A−1
β (Mβ − Eβ) ≥ 0,

Therefore, A−1
β Mβ ≥ A−1

β Eβ ≥ 0. So we have
ρ(E−1

β Fβ) ≤ ρ(M−1
β Nβ), that is

ρ(L̂r,w) ≤ ρ(Lr,w) < 1.

(II) Let A = I − L− U be irreducible. Since

Lr,w = (I − rL)−1[(1 − w)I + (w − r)L+ wU ]
= (1 − w)I + w(1 − r)L+ wU +Q

with Q = (I − rL)−1rL[w(1 − r)L+ wU ] ≥ 0
We have Lr,w is a nonnegative and irreducible matrix.

According to Lemma 2.2, there exits a positive vector x, such
that

Lr,wx = λx,
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From the expression of Lr,w we obtain the following
equality

[(1 − w)I + (w − r)L+ wU ]x = λ(I − rL)x

which is equivalent to

[(1 − w − r)I + (w − r + λr)L+ wU ]x = 0, (13)

and

(λ− 1)(I − rL)xw(L+ U − I)x (14)

Let KβU = K1 +K2, where K1, K2 are the diagonal and
lower triangular parts of KβU , respectively. So

Aβ = Dβ − Lβ − Uβ

= (I −K1) − (L−Kβ +KβL) − (U +K2)

where Dβ = I −K1, Lβ = L−Kβ +KβL, Uβ = U +K2

By (13) and (14), we have

L̂r,wx− λx
= (Dβ − rLβ)−1[(1 − w)Dβ + (w − r)Lβ + wUβ

− λ(Dβ − rLβ)]x
= (Dβ − rLβ)−1[(1 − w − λ)Dβ

+ (w − r + λr)Lβ + wUβ ]x
= (Dβ − rLβ)−1[(1 − w − λ)(I −K1)

+ (w − r + λr)(L−Kβ +KβL) + w(U +K2)]x
= (Dβ − rLβ)−1 {[(1 − w − λ)I + (w − r + λr)L+ wU ]

+ [−(1 − w − λ)K1

+(w − r + λr)(−Kβ +KβL) + wK2]}x
= (Dβ − rLβ)−1[−(1 − w − λ)K1

+ (w − r + λr)(−Kβ +KβL) + wK2]x
= (Dβ − rLβ)−1[(λ− 1)K1 + r(λ− 1)(KβL−Kβ)

+ wKβ(L+ U − I)]x
= (Dβ − rLβ)−1[(λ− 1)K1 + r(λ− 1)(KβL−Kβ)

+ (λ− 1)(I − rL)Kβ ]x
= (Dβ − rLβ)−1[(λ− 1)K1 − r(λ− 1)Kβ + (λ− 1)Kβ ]x
= (λ− 1)(Dβ − rLβ)−1[K1 + (1 − r)Kβ ]x

Here (Dβ − rLβ)−1 ≥ 0, K1 ≥ 0, (1 − r)Kβ ≥ 0
(1) If λ > 1, then L̂r,w ≥ 0 but not equal to 0. Therefore

L̂r,w ≥ λx.

By Lemma 2.3, we get ρ(L̂r,w) > λ = ρ(Lr,w).
(2) If λ = 1, then L̂r,w = 0but not equal to 0. Therefore

L̂r,w = λx.

By Lemma 2.3, we get ρ(L̂r,w) = λ = ρ(Lr,w).
(3) If λ < 1, then L̂r,w ≤ 0but not equal to 0. Therefore

L̂r,w ≤ λx.

By Lemma 2.3, we get ρ(L̂r,w) < λ = ρ(Lr,w).
Corollary 2.2 Let A = I−L−U ∈ Rn×n be a nonsingular

Z-matrix, Lr and L̂r be the iteration matrices of classical SOR-
type methods and preconditioned SOR-type methods with
preconditioner Pβ , respectively. Assume that 0 < r < 1, and
0 < βi < 1, i = 1, 2, . . . , n− 1.

(I) If ρ(Lr) < 1, then ρ(L̂r) ≤ ρ(Lr) < 1;
(II) Let A be irreducible. Assume that ai,i−1ai−1,i < 1, i =

2, . . . , n, then

(1) ρ(L̂r,w) > ρ(Lr,w) if ρ(Lr,w) > 1;
(2) ρ(L̂r,w) = ρ(Lr,w) if ρ(Lr,w) = 1;
(3) ρ(L̂r,w) < ρ(Lr,w) if ρ(Lr,w) < 1.
Corollary 2.3 Let A = I−L−U ∈ Rn×n be a nonsingular

Z-matrix, T and T̂ be the iteration matrices of classical Gauss-
Seidel-type methods and preconditioned Gauss-Seidel-type
methods with preconditioner Pβ , respectively. 0 < βi < 1,
i = 1, 2, . . . , n− 1.

(I) If ρ(T ) < 1, then ρ(T̂ ) ≤ ρ(T ) < 1;
(II) Let A be irreducible. Assume that ai,i−1ai−1,i < 1, i =

2, . . . n, then
(1) ρ(T̂ ) > ρ(T ) if ρ(T ) > 1;
(2) ρ(T̂ ) = ρ(T ) if ρ(T ) = 1;
(3) ρ(T̂ ) < ρ(T ) if ρ(T ) < 1.
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