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A new preconditioned AOR method for Z-matrices
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Abstract—In this paper, we present a preconditioned AOR-type
iterative method for solving the linear systems Ax = b, where A is a
Z-matrix. And give some comparison theorems to show that the rate
of convergence of the preconditioned AOR-type iterative method is
faster than the rate of convergence of the AOR-type iterative method.
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I. INTRODUCTION

OR solving linear system
Az =b, (1)

where A is an n X m square matrix, and x and b are n-
dimensional vectors, the basic iterative method is

MazF*tt = NzF +b, k=0,1,---, )

where A = M — N and M is nonsingular. Thus (2) can be
written as
eF Tt = Tk 4 c, k=0,1,...,

where T = M~IN, ¢ = M~ 1b.

Assuming A has unit diagonal entries and let A = I—L—U
where I is the identity matrix, —L and —U are strictly lower
and strictly upper triangular parts of A, respectively. Then,
(D the iteration matrix of the classical Gauss-Seidel-type
method is given by

T=(I-L)'U 3)

(II) the iteration matrix of the classical SOR-type method is
given by
L.=(I—rL) ' [(1-r)I+rU] “4)

where r # 0 is a parameter called the relaxation parameter.
(IIT) the iteration matrix of the classical AOR-type method is
given by

Liw=I-L)"[(1—-w) I+ (w—-7r)L+wU] (5)

where w and r are real parameters and w # 0.
Transform the original system (1) into the preconditioned
form
PAx = Pb.

Then, we can define the basic iterative scheme:
Myaz"™ = Nya¥ + Pb, k=0,1,...,

Guangbin Wang and Ning Zhang are with the Department of Mathematics,
Qingdao University of Science and Technology, Qingdao, 266061, China.

Fuping Tan is with the Department of Mathematics, Shanghai University,
Shanghai, 200444, China.

+ Corresponding author. E-mail: wguangbin750828 @sina.com. This work
was supported by Natural Science Fund of Shandong Province of China
(Y2008A13).

International Scholarly and Scientific Research & Innovation 4(7) 2010

where PA = M, — N, and M, is nonsingular. Thus the
equation above can also be written as

P =Tsb ¢, k=0,1,...,

where T = M, 'N,, ¢ = M, ' Pb.
In paper [1], Meijun Wu et al. presented the preconditioned
AOR-type iterative method with

P,=1+8,
1 —10a12
1 —Qiaa23
= (6)
1 —0p_10pn—1,n
1
and «;(1 = 1,2,--- ,n—1) are nonnegative real numbers, and

obtained some comparison results.
In this paper, we will present the preconditioned AOR-type
iterative method with

Pg =1+ Kﬁ
1
—Bra1z 1
7
= —Baaz3 ™
1
_ﬂn—lan—l,n 1
and 3;( ¢ =1,2,--- ,n — 1) are nonnegative real numbers.
In the following, we consider three splittings for A:
(D-L)-U o
A=¢ Y(D—rL)— (1 =r)D+rU] ®)
Derk _ L[(1 —w)D + (w—r)L + wU]

where D, —L and —U are diagonal, strictly lower and strictly
upper triangular parts of A, respectively.
In view of (8), the iteration matrices associated with A are:

T=(D-L)'U )
L.=(D—rL) *[(1—r)D+rU] (10)
Lyw= (D —=rL) (1 —w)D+ (w—7r)L+wU] (11)

In this paper, we will discuss the preconditioned iterative
methods with the preconditioner Pg for solving Z-matrices
linear systems and present comparison theorems of these
methods.
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II. COMPARISON RESULTS OF PRECONDITIONED
AOR-TYPE METHODS WITH PRECONDITIONER Pjg

We need the following definitions and results.

Definition 2.1 (Young [3]). A is a Z-matrix if a;; < 0,
foralli,7=1,2,...n, 1 # j.

Lemma 2.2 (Young [3]). Let A > 0 be an irreducible
matrix. Then

(1) A has a positive real eigenvalue equals to its spectral
radius;

(2) To p(A) there corresponds an eigenvector z > 0;

(3) p(A) is a simple eigenvalue of A.

Lemma 2.3 (Varga [4]). Let A be a nonnegative matrix.
Then

(1) If ax < Az for some nonnegative vector z, x # 0, then
a < p(A);

(2) If Az < Bz for some positive vector x, then p(A) < (.
Moreover, if A is irreducible and if 0 # ax < Az < fz for
some nonnegative vector z, then o < p(A) < (3 and x is a
positive vector.

Lemma 2.4 ([5]). Let A = M — N be an M-splitting of
A. Then p(M~IN) < 1 if and only if A is a nonsingular
M-matrix.

Lemma 2.5 ([6]). Let A be a Z-matrix. Then A is a
nonsingular M-matrix if and only if there is a positive vector
x such that Az > 0.

For the linear system (1), we consider its preconditioned
form

PgAl‘ = Pgb

with the preconditioner Pg = I + Kz in this section.
We apply the AOR method to it and have the corresponding
preconditioned AOR iteration matrix

Lyw =[Ds—rLs| (1 =w)Dg + (w—1)Lg+wUs], (12)

where Dg , —Lg and —Ug are diagonal, strictly lower and
strictly upper triangular parts of Ag = P3A, respectively.

Now we give the main results as follows.

Theorem 2.1 Let A=71—L—U € R"™ " be a nonsingular
Z-matrix, L, ,,and ﬁnw be the iteration matrices given by (5)
and (12). Assume that 0 < r < w < 1, and 0 < (3; < 1,
i=1,2,...,n—1

(I If p(Lyq) < 1, then

p(ir,w) < p(Lr,w) <1
(II) Let A be irreducible. Assume that

Qii—105—145 < 1,i=2,....,n

then A
1 P(@r,w) > p(LT,w) if p(LT,w) > 15
2) p(IA/r,w) = p(Lr,w) Zf p(Lr,w) =1,
3) p(Lyw) < p(Lrw)  if p(Lrw) < 1.
Proof. Let
M Lr—-rL)
- f[a —w)I + (w — )L + wU]
EB (D —rLg)
F [( )D@Jr (’(U*T)Lg +ng]
M LI+ Kg)(I—-rL)

:E(I+Kﬂ)[( —w)I + (w—r)L + wU]
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Then, we have
A=M-N, Ag=FEg—Fg=Mg— Ng

(I) Since A is a nonsingular Z-matrix and 0 < r < w < 1,
w # 0, it is clear that M = L(I —rL) is a nonsingular
M-matrix and the splitting
A=M-N = %(I—TL) _ %[(1—w)[+(w—r)L+wU]
is an M-splitting. Since p(L, ,,) < 1, it follows from Lemma
2.4 that A is a nonsingular M-matrix. Then by Lemma 2.5,
there is a positive vector x such that Ax >0,
so Agx = (I + Kg)Az > 0.

By Lemma 2.5, Ag is also a nonsingular M-matrix.

Obviously, we can get Dg is an positive diagonal matrix,
and Lg is nonnegative. From r > 0 we know that Ej3 is a Z-
matrix. Since rDﬂ_ng > 0 1is a strictly lower triangular matrix
so that p(ngng) =0< 1, we have (I — nglLﬁ)’l > 0.
Then

Eg=(I—rDg'Lg)"'D5' >0

Hence Ej is an nonsingular M-matrix.

By F3 > 0 we can prove that Ag = E3 — Fp is an M-
splitting. It follows from Lemma 2.4 that

p(Lrw) = pl

Since Ag = Eg— Fz and A = M — N are both M-splitting
and Mﬂ_lNg = M~'N, two splittings Ag = Eg — Fg =
Mg — Ng are nonnegative.

On the other hand,

Mg — Eg

= (14 K)(I - rL) — L(Dy — rLy)
=Y+ Ky —rL —rKsL— Dy + L)
E(I-‘rK[g—TL—TKgL—Dg
+T(Dﬁ—I+L—K,3+K[jL))
i([-‘rKﬂ—TL—TKgL—Dg
+rDg—rl+rL—rKg+rKgL)
(I+K5—D5+TD5—TI—T‘K5)
(I =r)(I = Dg) + (1 —r)Kp]

E;'Fp) < 1.

VIl | I
OSF@\H

which implies

AG' My — AZ Eg = AZN (Mg — Eg) > 0,

Therefore, Aj 1Mﬁ > Ag 'Es > 0. So we have
p(Ey 'Fp) <p(M 'Nj), that i 1s

P(Lr,w) < p(Lrw) < 1.
(II) Let A =1 — L — U be irreducible. Since

Lyw = —7rL)7 (1 —w)+ (w—r)L+wU]
=1-wl+wl-r)L+wU+Q

with @ = (I —rL)"YrLiw(1l —7)L +wU] > 0
We have L,, is a nonnegative and irreducible matrix.
According to Lemma 2.2, there exits a positive vector x, such
that
L,z = Az,
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From the expression of L., we obtain the following
equality

[(1—w)+ (w—r)L+wUz=XI—-rL)x
which is equivalent to
[(1—w—=r)]+ (w—7r+A )L+ wU]z =0, (13)
and
AN=-1){ —-rL)zw(L+U -1z (14)

Let KgU = K + K>, where Ky, K> are the diagonal and
lower triangular parts of KgU, respectively. So
= —-Ky))—(L—Ksg+ KgL) — (U + K>)
where Dﬁ:I—Kl, Lﬂ :L—Kﬁ—f—KﬁL, Uﬁ =U+ K>
By (13) and (14), we have

L,z — Az

= (Dg —rLg) '[(1 —w)Dg + (w —1)Lg + wUs
—ADg —rLp)|z

= (Dg —rLg)'[(1—w—ANDg

+ (w —T+A)L5+ng]x
= (Dg —rLp)'[(1 —w = A)(I — K1)

+ (w —r—l—)\r)(L Kg+ KgL) + w(U + Ka)lx

:(DB—TLﬁ) {[(1—11} M+ (w—7+ Ar)L + wU|
+[-1—-w—-ANEK;
+(w—r+ M) (—Kz+ KgL) + wKs]} =

= (Dp—rLp) (- w - Ny
+ (w—r+Ar)(—Kg+ KgL) + wKs|z

= (D —rLg) ' [(A = DK +7(A = 1)(KsL — Kp)
+ng(L + U - I)]l’

= (Dﬁ — TLB)il[()\ — 1)K1 + r()\ — 1)(K5L — Kﬂ)
+(A—1)(I —rL)Kglx

= (Dp —rLg) A= 1K1 —r(A = DKz + (A = 1) Kpla

= ()\ - 1)(D3 - TLﬁ)fl[Kl + (1 — T)Kﬁ}.%‘

Here (Dg —rLg)"' >0, Ky >0, (1-7)Kg=>0
(1) If A > 1, then L7,w > 0 but not equal to 0. Therefore

I:Tw > A\x.

By Lemma 2.3, we get p(L m,) > A= p(Ly ).
(2) If A =1, then Lmu = Obut not equal to 0. Therefore

[A/Tyw = \z.

By Lemma 2.3, we get p(]i,oyw) = A= p(Ly ).
(3) If A < 1, then L, ,, < Obut not equal to 0. Therefore

IA’T w < Az

By Lemma 2.3, we get p(Ly.w) < A= p(Ly.u).

Corollary 2.2 Let A=1—L—U € R™ "™ be a nonsingular
Z-matrix, L, and f,T be the iteration matrices of classical SOR-
type methods and preconditioned SOR-type methods with
preconditioner P, respectively. Assume that 0 < r < 1, and
0<pi<li=12...,n—-1

D If p(L,) < 1, then p(L,) < p(L,) < 1;

(II) Let A be irreducible. Assume that a; ;—1a;—1,; <1, ¢ =
2,...,n, then
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(1) p(L rw) > p(Lyw)

2 P( rw) = ,0( TUI) if p(LT,w) =1

3) P( r,w) < /O(Lr,w) if /O(Lr,w) <1

Corollary 2.3 Let A=I1—L—U € R™ " be a nonsingular
Z-matrix, 1" and T be the iteration matrices of classical Gauss-
Seidel-type methods and preconditioned Gauss-Seidel-type
methods with preconditioner Pg, respectively. 0 < 5; < 1,
1=1,2,...,n—1.

(M) If p(T) < 1, then p(T) < p(T) < 1;

(II) Let A be irreducible. Assume that a; ;_1a,-1,; < 1, i =
2,...m, tpen

(D) p(T) > p(T) if p(T) > 1;

() p(T) = p(T) if p(T) = 1;

(3) p(T') < p(T) if p(T) < 1.

if p(Lyw) > 1
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