**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32937

##### Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems

**Authors:**
Shengfeng Li,
Rujing Wang

**Abstract:**

**Keywords:**
Iterative method,
Fixed-point iteration,
Thiele's continued
fraction,
Order of convergence.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1055218

**References:**

[1] R.L. Burden, J.D. Faires, Numerical Analysis (Sixth ed.), Brooks/Cole Publishing Company, Calif., 1997.

[2] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Third ed.), Springer-Verlag, New York, 2002.

[3] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer- Verlag, New York, 2000.

[4] J.Q. Tan, The limiting case of Thiele-s interpolating continued fraction expansion, J. Comput. Math. 19 (2001), pp. 433-444.

[5] J.Q. Tan, The Theory of Continued Fraction and Its Applications, Science Publishers, Beijing, 2007.

[6] S. Weerakoon, T.G.I. Fernando, A variant of Newton-s method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), pp. 87-93.

[7] J. Kou, Y. Li, A family of modified super-Halley methods with fourthorder convergence, Appl. Math. Comput. 189 (2007), pp. 366-370.

[8] J. Kou, Some variants of Cauchy-s method with accelerated fourth-order convergence, J. Comput. Appl. Math. 213 (2008), pp. 71-78.

[9] C. Chun, Y. Ham, Some fourth-order modifications of Newton-s method, Appl. Math. Comput.197 (2008), pp. 654-658.

[10] I.K. Argyros, A note on the Halley method in Banach spaces, Appl. Math. Comput. 58 (1993), pp. 215-224.

[11] J.M. Guti'errez, M.A. Hern'andez, An acceleration of Newtons method: super-Halley method, Appl. Math. Comput. 117 (2001), pp. 223-239.

[12] J.M. Guti'errez, M.A. Hern'andez, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc. 55 (1997), pp. 113-130.

[13] J. Kou, Y. Li, X. Wang, Fourth-order iterative methods free from second derivative, Appl. Math. Comput. 184 (2007), pp. 880-885.

[14] S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput. 145 (2003), pp. 887-893.

[15] J. Kou, Y. Li, X. Wang, A composite fourth-order iterative method for solving non-linear equations, Appl. Math. Comput. 184 (2007), pp. 471- 475.

[16] J. Kou, X. Wang, Y. Li, Some eighth-order root-finding three-step methods, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), pp. 536- 544.

[17] X. Wang, J. Kou, C. Gu, A new modified secant-like method for solving nonlinear equations, Computers and Math. with Appl. 60 (2010), pp. 1633-1638.