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Abstract—We study the semiconvergence of Gauss-Seidel iterative
methods for the least squares solution of minimal norm of rank
deficient linear systems of equations. Necessary and sufficient con-
ditions for the semiconvergence of the Gauss-Seidel iterative method
are given. We also show that if the linear system of equations is
consistent, then the proposed methods with a zero vector as an initial
guess converge in one iteration. Some numerical results are given to
illustrate the theoretical results.

Keywords—rank deficient least squares problems, AOR iterative
method, Gauss-Seidel iterative method, semiconvergence.

I. I NTRODUCTION

COnsider the problem of computing the numerical solution
to the system of linear equations

Ax = b, (1)

whereA ∈ Cm×n with m ≥ n and rank(A) = k < n and
b ∈ Cm. In [5], Miller and Neumann discussed successive
overrelaxation (SOR) method to solve this problem. They par-
titioned the matrixA into four parts and then applied the SOR
method to solve the new system. In their paper they consider
the semiconvergence interval of the SOR methods and the
optimal relaxation parameter which minimized the modulus of
the controlling eigenvalue of the SOR iteration matrix. Also,
they gave a method for transforming the solutions resulting
from SOR iterative methods for the augmented systems to the
solutions of the original problem. In [6], Tian extended Miller
and Neumann’s results to accelerated overrelaxation (AOR)
iterative methods. Recently, Hung and Song [4] have consid-
ered semiconvergence of the AOR iterative methods for the
least squares solution of minimal norm of rank deficient linear
systems. They have given necessary and sufficient conditions
for semiconvergence of the AOR and Jacobi overrelaxation
(JOR) iterative methods. They also derived the optimum
parameters and the associated convergence factor. In addition
they proposed some AOR iterative methods induced by some
different splittings of the augmented coefficient matrix̃A of
system (1).

In this paper, we study semiconvergence of the Gauss-Seidel
iterative method for the least squares solution of minimal norm
of rank deficient linear systems. We first give a necessary and
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sufficient conditions for the semiconvergence of the Gauss-
Seidel iterative methods induced by splittings presented in [4].
Then, in the case that the system (1) is consistent, we show
that the Gauss-Seidel iterative methods with zero vector as an
initial guess converge in one iteration.

Throughout the paper, forA ∈ Cm×n, AH , R(A), rank(A),
σ(A) and ρ(A) denotes the conjugate transpose, the range
space, the rank, the spectrum and the spectral radius ofA,
respectively. Moreover,Cm×n

k = {A ∈ Cm×n : rank(A) =
k} and forx = (x1, . . . , xn)T ∈ Cn, ‖x‖2 denotes the 2-norm
overCn, i.e., ‖x‖2 = (

∑i=n
i=1

|xi|
2)

1

2 .
This paper is organized as follows. In section 2, we review

the block AOR iterative method for rank deficient least squares
problem. Section 3 is devoted to the block Gauss-Seidel
iterative method for rank deficient least squares problem. In
section 4, we present some numerical results. Some concluding
results are given in section 5.

II. A BRIEF REVIEW OF THE BLOCKAOR ITERATIVE

METHOD FOR RANK DEFICIENT LEAST SQUARES PROBLEM

In this section we review the block AOR iterative method
for rank deficient least squares problem proposed in [6] and
more investigated in [4]. LetA ∈ Cm×n

k . It is well known that
y ∈ Cn is the least squares solution to Eq. (1), that is,

‖b − Ay‖2 = min
x∈Cn

‖b − Ax‖2,

if and only if AHr = 0 wherer = b − Ay. Without loss of
generality suppose thatA has the form

A =

(
A11 A12

A21 A22

)
,

where A11 ∈ Ck×k
k and the remaining blocks ofA are ap-

propriate linear combinations ofA11 with A22 = A21A
−1

11
A12

[5]. We partition the vectory andr into

(
y1

y2

)
and

(
r1

r2

)

respectively in conformity with the partitioning ofA andAH .
In this case, the augmented system can be written as

Ãz = b̃, (2)
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where

Ã =




A11 0 Ik A12

A21 Im−k 0 A22

0 AH
21

AH
11

0
0 AH

22
AH

12
0


 ,

z =




y1

r2

r1

y2


 , b̃ =




b1

b2

0
0


 .

In [6], Tian split the matrixÃ into

Ã = D − L − U, (3)

where

D =




A11 0 0 0
A21 Im−k 0 0
0 0 AH

11
0

0 0 0 In−k


 ,

L =




0 0 0 0
0 0 0 0
0 −AH

21
0 0

0 −AH
22

−AH
12

0


 ,

U =




0 0 −Ik −A12

0 0 0 −A22

0 0 0 0
0 0 0 In−k


 .

Then, forω �= 0, the AOR iterative method [3] is defined by

z(i+1) = Lγ,ωz(i) + c, (4)

where

Lγ,ω = (D − γL)−1[(1 − ω)D + (ω − γ)L + ωU ]

=




(1 − ω)I 0
0 (1 − ω)I
0 ω(γ − 1)BH

0 −ω(γ − 1)2AH
22

−ωA−1

11
−ωC

ωB 0
(1 − ω)I − ωγBHB 0

ω(γ − 1)AH
12

(γBHB + I) I




in whichB = A21A
−1

11
, C = A−1

11
A12 andc = ω(D−γL)−1b̃.

It is well known that the AOR iterative method (4) is
semiconvergent from any initial vectorz(0) if and only if the
following three conditions hold: (see for example [1] )
(a) ρ(Lγ,ω) = 1;
(b) If λ ∈ σ(Lγ,ω) with |λ| = 1, thenλ = 1, i.e.,

ϑ(Lγ,ω) = max{|λ|, λ ∈ σ(Lγ,ω), λ �= 1} < 1.

(c) Elementary divisors associated with 1 are linear, i.e.,

rank(I − Lγ,ω) = rank(I − Lγ,ω)2

or equivalentlyI − Lγ,ω) = 1.

In [4], Huang and Song presented the following theorem
concerning the semiconvergence of the iterative method (4).

Theorem 1. Let γ �= 0. Then, the AOR iterative method (4) is
semiconvergent if and only if the parametersγ and ω satisfy
ω ∈ (0, 2√

1+µ̄2
) and γ ∈ (α(µ̄2), β(µ̄2)), where µ̄ = ‖B‖2

and

α(z) =
1

z
(ω−2+ωz), β(z) =

1

ωz
(2−2ω+

1

2
ω2+

1

2
ω2z).

Moreover, if the AOR iterative method is semiconvergent, then
the optimal pair of parametersγopt andωopt is determined by

ωopt = γopt =
2

1 +
√

1 + µ̄2
.

It is well known that the AOR iterative method with
ω = γ = 1 results in the Gauss-Seidel iterative method. In
the next section we give more investigation of the Gauss-
Seidel iterative method and give some results concerning its
convergence.

III. B LOCK GAUSS-SEIDEL ITERATIVE METHOD FOR RANK

DEFICIENT LEAST SQUARES PROBLEM

Let γ = ω = 1 and G = L1,1. Then, the Gauss-Seidel
iterative method is defined by

z(i+1) = Gz(i) + f, (5)

where

G = (D − L)−1U

=




0 0 −A−1

11
−C

0 0 B 0
0 0 −BHB 0
0 0 0 I


 ,

is the Gauss-Seidel iteration matrix withf = (D − L)−1b̃.
Evidently, the spectrum ofG is

σ(G) = {0, 1} ∪ σ(−BHB). (6)

Now we state and prove the following theorem.

Theorem 2. The Gauss-Seidel iterative method is semiconver-
gence with any initial guessz(0) if and only if ‖B‖2 < 1.

Proof. Similar to Theorem 2.3 in [4], we have

I − G =




Ik 0 0
0 Im−k 0
0 0 Ik

0 0 0




×


 Ik 0 A−1

11
C

0 Im−k −B 0
0 0 I + BHB 0




≡ F.G,

where

F =




Ik 0 0
0 Im−k 0
0 0 Ik

0 0 0


 ,

G =


 Ik 0 A−1

11
C

0 Im−k −B 0
0 0 I + BHB 0


 .
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The matrixI+BHB is Hermitian positive definite. Therefore,
F ∈ C

(m+n)×(m+k)

m+r andG ∈ C
(m+k)×(m+n)

m+r . According to a
theorem of Cline [2],I −G) ≤ 1 if and only if det(GF ) �= 0.
Now, we have

det(GF ) = det


 I 0 A−1

11

0 I −B

0 0 I + BHB




= det(I + BHB) > 0.

Obviously, the eigenvalues of−BHB are nonpositive.
Therefore, 1 can not be an eigenvalue of−BHB. Hence, the
method is semiconvergent if and only ifρ(−BHB) < 1. On
the other hand it is easy to see that

ρ(−BHB) = ‖B‖2

2
.

This completes the proof. �

Theorem 3. Let b ∈ R(A) andz(0) = 0. Then, the vectorz(1)

computed by (5) provides the exact solution of Eq. (1).

Proof. If z(0) = 0, then from (5) we havez(1) = f . It is easy
to see that

(D − L)−1 =




A−1

11
0 0 0

−B I 0 0

BHB −BH A−H
11

0

0 0 −AH
12

A−H
11

I


 .

Therefore, we have

f = (D − L)−1b̃

=




A−1

11
0 0 0

−B I 0 0

BHB −BH A−H
11

0

0 0 −AH
12

A−H
11

I







b1

b2

0
0




=




A−1

11
b1

−Bb1 + b2

BHBb1 − BHb2

0


 .

We define

y =

(
A−1

11
b1

0

)
.

Therefore, we obtain

r = b − Ay =

(
0

b2 − A21A
−1

11
b1

)
=

(
0

b2 − Bb1

)
. (7)

Obviously, system (1) is equivalent to(
A11 A12

0 A22 − A21A
−1

11
A12

) (
x1

x2

)

=

(
b1

b2 − A21A
−1

11
b1

)
.

Hence, by the consistency of this system andA22 =
A21A

−1

11
A12, we haveb2 = A21A

−1

11
b1 = Bb1. Therefore,

form (7) we haver = 0 and this completes the proof. �

There is not any contradiction between theorems 1 and 3.
Because, in Theorem 1 the minimization has been performed

with respect toω and γ and the optimal parameters are
independent of initial guessz(0).

Huang and Song in [4] proposed four other splittings ofÃ

as following:

Ã =




A11 0 0 0
A21 Im−k 0 0
0 0 AH

11
0

0 AH
22

0 In−k




−




0 0 0 0
0 0 0 0
0 −AH

21
0 0

0 0 −AH
12

0




−




0 0 −Ik −A12

0 0 0 −A22

0 0 0 0
0 0 0 In−k


 , (8)

Ã =




A11 0 0 0
A21 Im−k 0 0
0 0 AH

11
0

0 0 AH
12

In−k




−




0 0 0 0
0 0 0 0
0 −AH

21
0 0

0 −AH
22

0 0




−




0 0 −Ik −A12

0 0 0 −A22

0 0 0 0
0 0 0 In−k


 , (9)

Ã =




A11 0 0 0
0 Im−k 0 0
0 AH

21
AH

11
0

0 0 0 In−k




−




0 0 0 0
−A21 0 0 0

0 0 0 0
0 −AH

22
−AH

12
0




−




0 0 −Ik −A12

0 0 0 −A22

0 0 0 0
0 0 0 In−k


 , (10)

and

Ã =




A11 0 0 0
0 Im−k 0 0
0 AH

21
AH

11
0

0 AH
22

AH
12

In−k




−




0 0 0 0
−A21 0 0 0

0 0 0 0
0 0 0 0




−




0 0 −Ik −A12

0 0 0 −A22

0 0 0 0
0 0 0 In−k


 . (11)
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It is easy to see that theorems 2 and 3 hold for all of these
splittings.

IV. N UMERICAL EXPERIMENTS

In this section, we give two examples to illustrate the
theoretical results presented in the previous section.

Example 1. Let

A =




−8 1 1 −1
1 −8 1 1
1 −1 0 2

9

2 1 − 3

7

1

9


 ,

and

b = b̄ =




7
5
3
4


 , b = b̂ =




−12
33
5

−2


 .

Then

B =

(
−1

9

1

9

− 17

63
− 10

63

)
.

Here b̄ /∈ R(A), but we have‖B‖2 = 0.3163 < 1. According
to Theorem 2 the Gauss-Seidel iterative method to solve
system (2) associated with̄b is semiconvergent. On the other
hand, we havêb ∈ R(A), since we havêb = A(1,−2, 7, 9)T .
Therefore, according to Theorem 3 we expect that the Gauss-
Seidel iterative with initial guessz(0) = 0 converges in one
iteration. In TABLE I, we compare the numerical results of
the Gauss-Seidel method with that of AOR iterative method
with optimal parameters. We use a zero vector as an initial
guess and

Ek =
‖AHr(k))‖2

‖AHr(0))‖2

< 10−9,

as the stopping criterion, wherer(k) = b−Ay(k) in which y(k)

is the approximation of the vectory computed at iterationk.
We report the results for all of five splittings mentioned in
this paper. In this table “GS” and “iters” stand for the Gauss-
Seidel iterative method and the number of iterations for the
convergence, respectively. As we observe, ifb ∈ R(A) then the
Gauss-Seidel iterative method converges in 1 iteration (small
reported errors are due to round-off error propagations). We
also observe, in the case thatb /∈ R(A) and both Gauss-Seidel
and AOR iterative methods are convergent, the results of the
AOR method with optimal parameters are better than that of
the Gauss-Seidel iterative method.

Example 2. Let

A11 =


 2 −1 0

−1 2 −1
0 −1 1




A12 = A21 =
2

25


 1 1 −1

1 −1 1
−1 1 1


 ,

A22 =
8

625


 1 0 0

0 1 1
0 1 3


 ,

TABLE I
NUMERICAL RESULTS FOREXAMPLE 1.

Results forb = b̄
Split. (3) Split. (8) Split. (9) Split. (10) Split. (11)

AOR: iters 7 7 7 7 7
Ek 2.40e-10 2.61e-10 2.28e-10 3.42e-10 3.42e-10

GS: iters 10 10 10 10 10
Ek 3.19e-10 3.19e-10 3.19e-10 3.19e-10 3.19e-10

Results forb = b̂
Split. (3) Split. (8) Split. (9) Split. (10) Split. (11)

AOR: iters 6 6 6 6 6
Ek 1.83e-10 1.83e-10 1.83e-10 2.55e-10 2.55e-10

GS: iters 1 1 1 1 1
Ek 1.90e-16 1.90e-16 1.90e-16 1.90e-16 1.90e-16

TABLE II
NUMERICAL RESULTS FOREXAMPLE 2.

Results forb = b̄
Split. (3) Split. (8) Split. (9) Split. (10) Split. (11)

AOR: iters 9 9 9 9 9
Ek 1.73e-10 1.73e-10 1.73e-10 4.14e-11 4.14e-11

GS: iters 13 13 13 13 13
Ek 8.98e-10 8.98e-10 8.98e-10 8.98e-10 8.98e-10

Results forb = b̂
Split. (3) Split. (8) Split. (9) Split. (10) Split. (11)

AOR: iters 6 6 6 6 6
Ek 5.00e-010 5.00e-010 5.00e-010 5.01e-010 5.01e-010

GS: iters 1 1 1 1 1
Ek 6.06e-16 6.06e-16 6.06e-16 6.06e-16 6.06e-16

and

b = b̄ =




1
2
1

−1
4
2


 , b = b̂ = A




1
1
1
1
1
1


 =

1

25




27
2
2
58

25
66

25
82

25


 .

Then

B =
2

25


 1 1 0

1 1 2
1 3 4




We have‖B‖2 = 0.4545 < 1. Therefore, by Theorem 2 the
Gauss-Seidel iterative method to solve system (2) associated
with b̄ and b̂ is semiconvergent. Obviously, we haveb̂ ∈ R(A)
and hence according to Theorem 3 we expect that the Gauss-
Seidel iterative with initial guessz(0) = 0 converges in one
iteration. Numerical results are given in TABLE II. Here, we
mention that all of the assumptions are as Example 1. As we
see, all of the observations of the Example 1 can be posed
here.

V. CONCLUSION

We have considered the block Gauss-Seidel iterative method
to solve rank deficient least squares problems. Two theorems
concerning the semiconvergence of the method have been
presented. Numerical results confirm the theoretical results.
We have compared the numerical results of the block Gauss-
Seidel iterative method with that of the AOR iterative method.
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Numerical results show that in general the block Gauss-Seidel
iterative method can not compete with the AOR iterative
method with optimal parameters. But, in the case thatb ∈
R(A) the Gauss-Seidel iterative method converges only in
one iteration, whereas this is not true for the AOR iterative
methods. We also presented the numerical results for all of
the splittings discussed in this paper. We have observed that
for small problems there is no significant difference between
these splittings.
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