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Abstract—By the real representation of the quaternionic matrix,
an iterative method for quaternionic linear equations Ax = b is
proposed. Then the convergence conditions are obtained. At last, a
numerical example is given to illustrate the efficiency of this method.
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I. INTRODUCTION

IN quaternionic quantum mechanics and some other

applications of quaternions[1], [2], [3], the problem

of solutions of quaternionic linear equations is often

encountered. Because of noncommutativity of quaternions,

solving quaternionic linear equations is difficult. In papers[4],

[5], [6], [7], by means of a complex representation and a

companion vector, the authors have studied quatemionic linear

equations and presented a Cramer rule for quaternionic linear

equations and an algebraic algorithm for the least squares

problem, respectively, in quaternionic quantum theory. In the

paper[8], by using the complex representation of quaternion

matrices, and the Moore-Penrose generalized inverse, the

authors derive the expressions of the least squares solution

with the least norm, the least squares pure imaginary solution

with the least norm, and the least squares real solution with

the least norm for the quaternion matrix equation AX = B,

respectively.

In the paper [9] and [10], by means of a real representation

of the quaternionic matrix, we gave an iterative algorithms for

the least squares problem in quaternionic quantum theory, and

the relation between the positive (semi)definite solutions of

quaternionic matrix equations and those of corresponding real

matrix equations, respectively.

In this paper, we will pay attention to quaternionic linear

equations Ax = b by means of the real representation, and

propose an iterative method, which is more suitable in the

large-scale systems.

Let R denote the real number field, Q = R⊕Ri⊕Rj⊕Rk
the quaternion field, where

i2 = j2 = k2 = −1, ij = −ji = k.
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Let Al ∈ Rm×n(l = 1, 2, , 3, 4). The real representation

matrix is defined[7] in the form

AR ≡

⎛
⎜⎜⎝

A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1

⎞
⎟⎟⎠ ∈ R4m×4n. (1)

The real matrix AR is uniquely determined by quaternion

matrix

A = A1 +A2i+A3j +A4k ∈ Qm×n,

and it is said to be a real representation matrix of quaternion

matrix A.
Then it is easy to verify the following properties.

Proposition 1.[10] Let A,B ∈ Qm×n, C ∈ Qn×s, α ∈ R.
Then

(A+B)R = AR+BR, (αA)R = αAR, (AC)R = ARCR.

II. MAIN RESULTS

In this section, we will give an iterative method for

Ax = b, (2)

where A = A1 + A2i + A3j + A4k ∈ Qn×n,b = b1 + b2i +
b3j + b4k ∈ Qn, and x = x1 + x2i + x3j + x4k ∈ Qn. A
and A1 are nonsingular. Then, we will discuss the convergence

conditions for this iterative method.
The real representation equation of (2) is

ARxR = bR, (3)

that is,⎛
⎜⎜⎝

A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

b1 −b2 −b3 −b4
b2 b1 −b4 b3
b3 b4 b1 −b2
b4 −b3 b2 b1

⎞
⎟⎟⎠ ,

which may be written as⎛
⎜⎜⎝

A1

A1

A1

A1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −A2 −A3 −A4

A2 0 −A4 A3

A3 A4 0 −A2

A4 −A3 A2 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

b1 −b2 −b3 −b4
b2 b1 −b4 b3
b3 b4 b1 −b2
b4 −b3 b2 b1

⎞
⎟⎟⎠ .
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It follows from Proposition 1 that the above formula is

equivalent to
⎧⎪⎪⎨
⎪⎪⎩

A1x1 = A2x2 +A3x3 +A4x4 + b1
A1x2 = −A2x1 +A4x3 −A3x4 + b2
A1x3 = −A3x1 −A4x2 +A2x4 + b3
A1x4 = −A4x1 +A3x2 −A2x3 + b4

.

So we can construct the iterative algorithm as follows:

Algorithm 1. the algorithm for Ax = b

(I). Initialization. Given arbitrary x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ;

(II). Iteration. For l = 1, 2, · · ·
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(l+1)
1 = A−1

1 (A2x
(l)
2 +A3x

(l)
3 +A4x

(l)
4 + b1)

x
(l+1)
2 = −A−1

1 (A2x
(l)
1 +A4x

(l)
3 −A3x

(l)
4 + b2)

x
(l+1)
3 = −A−1

1 (A3x
(l)
1 −A4x

(l)
2 +A2x

(l)
4 + b3)

x
(l+1)
4 = −A−1

1 (A4x
(l)
1 +A3x

(l)
2 −A2x

(l)
3 + b4)

,

(III). check convergence.

Theorem 1. If ‖A−1
1 (Al)‖ < 1, l = 2, 3, 4, then the sequence

{(x(l)
1 x

(l)
2 x

(l)
3 x

(l)
4 )}, generated by Algorithm 1, converges to

(x
(∗)
1 x

(∗)
2 x

(∗)
3 x

(∗)
4 ), where

x = x
(∗)
1 + x

(∗)
2 i+ x

(∗)
3 j + x

(∗)
4 k

is the solution of (2).

Proof. we can easily obtain

x
(l+1)
1 − x

(∗)
1

= A−1
1

(
A2(x

(l)
2 − x

(∗)
2 ) +A3(x

(l)
3 − x

(∗)
3 ) +A4(x

(l)
4 − x

(∗)
4 )

)

=
4∑

i=1

fi(A
−1
1 A2, A

−1
1 A3, A

−1
1 A4)(x

(0)
i − x

(∗)
i ),

where fi(x, y, z) is a (l + 1)-order homogeneous polynomial

on x, y, z.

If ‖A−1
1 (Al)‖ < 1, l = 2, 3, 4, it is obvious that

x
(l)
1 → x

(∗)
1 .

Similarly, x
(l)
i → x

(∗)
i , i = 2, 3, 4.�

Since the iterative matrix of Algorithm 1 is

B =

⎛
⎜⎜⎝

0 −A−1
1 A2 −A−1

1 A3 −A−1
1 A4

A−1
1 A2 0 −A−1

1 A4 A−1
1 A3

A−1
1 A3 A−1

1 A4 0 −A−1
1 A2

A−1
1 A4 −A−1

1 A3 A−1
1 A2 0

⎞
⎟⎟⎠ , (4)

we can get the following result.

Theorem 2. If and only if ρ(B) < 1, the sequence

{(x(l)
1 x

(l)
2 x

(l)
3 x

(l)
4 )}, generated by Algorithm 1, converges to

(x
(∗)
1 x

(∗)
2 x

(∗)
3 x

(∗)
4 ), where x = x

(∗)
1 + x

(∗)
2 i+ x

(∗)
3 j + x

(∗)
4 k is

the solution of (2).

Because ρ(B) ≤ ‖B‖∞, we have

Theorem 3. If ‖A−1
1 (A2A3A4)‖∞ < 1, the sequence

{(x(l)
1 x

(l)
2 x

(l)
3 x

(l)
4 )}, generated by Algorithm 1, converges to

(x
(∗)
1 x

(∗)
2 x

(∗)
3 x

(∗)
4 ), where x = x

(∗)
1 + x

(∗)
2 i+ x

(∗)
3 j + x

(∗)
4 k is

the solution of (2).

III. NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate

the efficiency of our algorithm.

Given A = A1+A2i+A3j+A4k, x = x1+x2i+x3j+x4k
with

A1=

⎛
⎜⎜⎝

9 12 −37 6
−8 0 19 −7
17 43 −19 0
78 −98 0 12

⎞
⎟⎟⎠A2=

⎛
⎜⎜⎝

10 2 −9 8
7 0 19 −7
1 −4 9 21
7 0 4 −1

⎞
⎟⎟⎠ ,

A3=

⎛
⎜⎜⎝

0 8 0 36
−3 0 9 −9
1 0 9 12
−7 13 0 7

⎞
⎟⎟⎠A4=

⎛
⎜⎜⎝

17 0 −17 3
0 8 0 0
1 0 9 19
0 10 1 −12

⎞
⎟⎟⎠ ,

x1 = (1 1 3 − 4)′, x2 = (0 − 7 8 11)′, x3 =
(−8 14 20 3)′, x4 = (32 14 0 − 17)′, A1 = 10A1.
b = b1 + b2i+ b3j + b4k ≡ Ax.

A and A1 are nonsingular, Ax = b has a unique solution x.

10 12 14 16 18 20
0

1

2

3

4

5

6
x 10−6

l

no
rm

(x
(l)
−

x)

Fig. 1. The error of the computed solutions by Algorithm 1

Fig.1 depicts the relation of the k-step approximate

x(l) = x
(l)
1 + x

(l)
2 i+ x

(l)
3 j + x

(l)
4 k

and the true solution x. From Fig.1, we can see that Algorithm

1 is efficient for this example.
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