Search results for: silica shell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 981

Search results for: silica shell

921 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil

Authors: Saimatun Nisa

Abstract:

Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.

Keywords: walnut shell, biooil, biochar, microwave pyrolysis

Procedia PDF Downloads 6
920 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs

Authors: Yunzhe Tong, Jun Fan, Bin Wang

Abstract:

The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.

Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis

Procedia PDF Downloads 180
919 Superhydrophobic Coatings Based On Waterborne Polyolefin And Silica Nanoparticles

Authors: Kyuwon Lee, Young-Wook Chang

Abstract:

Superhydrophobic surfaces have been paid great attentions over the years due to their various applications. In this study, superhydrophobic coatings based on the hybrids of hydrophobically modified silica nanoparticles and waterborne polyolefin were fabricated onto a cotton fabric by spraying a mixture of surface dodecylated silica nanoparticles with aqueous dispersion of polyolefin onto the fabric and a subsequent drying at 80℃. The coated fabrics were characterized using water-contact angle measurement, SEM, and AFM analysis. The coated fabrics exhibit superhydrophobicity with a water contact angle of 155° along with excellent self-cleaning and water/oil separation ability. It was also revealed that such superhydrophobicity was maintained after repeated mechanical abrasion using a sandpaper.

Keywords: superhydrophobic coating, waterborne polyolefin, dodecylated silica nanoparticle, durability

Procedia PDF Downloads 99
918 Development of a Nanocompound Based Fibre to Combat Insects

Authors: Merle Bischoff, Thomas Gries, Gunnar Seide

Abstract:

Pesticides, which harm crop enemies, but can also interfere with the human body, are nowadays mostly used for crop spraying. Silica particles (SiO2) in the nanometer and micrometer scale offer a physical way to combat insects without harming humans and other mammals. Thereby, they allow foregoing pesticides, which can harm the environment. As silica particles are supplied as a powder or in a suspension to farmers, the silica use in large scale agriculture is not sufficient due to erosion through wind and rain. When silica is implemented in a textile’s surface (nanocompound), particles are locally bound and do resist erosion, but can function against bugs. By choosing polypropylene as a matrix polymer, the production of an inexpensive agritextile with an 'anti-bug' effect is made possible. In the Symposium the results of the manufacturing and filament spinning of silica nanocomposites from a polypropylene basis is compared to the fabrication from nanocomposites based on Polybutylene succinate, a biodegradable composite. The investigation focuses on the difference between degradable nanocomposite and stable nanocomposite. Focus will be laid on the filament characteristics as well as the degradation of the nanocompound to underline their potential use and application as an agricultural textile.

Keywords: agriculture, environment, insects, protection, silica, textile, nanocomposite

Procedia PDF Downloads 226
917 Catalytic Production of Hydrogen and Carbon Nanotubes over Metal/SiO2 Core-Shell Catalyst from Plastic Wastes Gasification

Authors: Wei-Jing Li, Ren-Xuan Yang, Kui-Hao Chuang, Ming-Yen Wey

Abstract:

Nowadays, plastic product and utilization are extensive and have greatly improved our life. Yet, plastic wastes are stable and non-biodegradable challenging issues to the environment. Waste-to-energy strategies emerge a promising way for waste management. This work investigated the co-production of hydrogen and carbon nanotubes from the syngas which was from the gasification of polypropylene. A nickel-silica core-shell catalyst was applied for syngas reaction from plastic waste gasification in a fixed-bed reactor. SiO2 were prepared through various synthesis solvents by Stöber process. Ni plays a role as modified SiO2 support, which were synthesized by deposition-precipitation method. Core-shell catalysts have strong interaction between active phase and support, in order to avoid catalyst sintering. Moreover, Fe or Co metal acts as promoter to enhance catalytic activity. The effects of calcined atmosphere, second metal addition, and reaction temperature on hydrogen production and carbon yield were examined. In this study, the catalytic activity and carbon yield results revealed that the Ni/SiO2 catalyst calcined under H2 atmosphere exhibited the best performance. Furthermore, Co promoted Ni/SiO2 catalyst produced 3 times more than Ni/SiO2 on carbon yield at long-term operation. The structure and morphological nature of the calcined and spent catalysts were examined using different characterization techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction. In addition, the quality and thermal stability of the nano-carbon materials were also evaluated by Raman spectroscopy and thermogravimetric analysis.

Keywords: plastic wastes, hydrogen, carbon nanotube, core-shell catalysts

Procedia PDF Downloads 291
916 Synthesis of Ni/Mesopore Silica-Alumina Catalyst for Hydrocracking of Pyrolyzed α-Cellulose

Authors: Wega Trisunaryanti, Hesty Kusumastuti, Iip Izul Falah, Muhammad Fajar Marsuki, Rahmad Nuryanto

Abstract:

Synthesis of Ni supported on mesopore silica-alumina (MSA) for hydrocracking of pyrolyzed α-cellulose had been carried out. The silica and alumina were extracted from Sidoarjo mud. Gelatin from catfish bone was used as a template for the mesopore design. The MSA was synthesized by using hydrothermal method at 100 °C for 24 h and calcined at 550 °C for 4 h then characterized by using X-Ray Diffraction Spectrometer (XRD) and Nitrogen Gas Sorption Analyzer (GAS). The Ni metal was loaded to the MSA by wet impregnation method. The catalytic activity in the hydrocracking reaction of pyrolyzed α-cellulose was carried out at 450 °C for 2 h. The MSA synthesized in this work is an amorphous material with specific surface area, total pore volume, and average pore diameter of 212.29 m²/g, 1.29 cm³/g, and 20.05 nm, respectively. The Ni/MSA catalyst produced 73.02 wt.% of liquid product in hydrocracking of pyrolyzed α-cellulose.

Keywords: catalyst, gelatin, hydrocracking, mesopore silica-alumina, α-cellulose

Procedia PDF Downloads 136
915 Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method

Authors: Kefaifi Aissa, Sahraoui Tahar, Kheloufi Abdelkrim, Anas Sabiha, Hannane Farouk

Abstract:

The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement.

Keywords: acid leaching, design of experiments method(DOE), purity silica, silica etching

Procedia PDF Downloads 257
914 Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives

Authors: Raied, Badr Al-Fulaiti, E. I. El-Shafey

Abstract:

Cyclodextrin (CD) derivatives (αCD, βCD, ϒCD and hp-βCD) were successfully immobilized on silica gel surface via epichlorohydrin as a cross linker. The ratio of silica to CD was optimized in preliminary experiments based on best performance of iodine adsorption capacity. Selected adsorbents with ratios of silica to CD derivatives, in this study, include Si-αCD (3:2), Si-βCD (4:1), Si-ϒCD (4:1) and Si-hp-βCD (4:1). The adsorption of iodine (I2/KI) solution was investigated in terms of initial pH, contact time, iodine concentration and temperature. No significant variations was noticed for iodine adsorption at different pH values, thus, initial pH 6 was selected for further studies. Equilibrium adsorption was reached faster on Si-hp-βCD than other adsorbents with kinetic adsorption data fitting well pseudo second order model. Activation energy (Ea) was found to be in the range of 12.7 - 23.4 kJ/mol. Equilibrium adsorption data were found to fit well the Langmuir adsorption model with lower uptake as temperature rises. Iodine uptake follows the order: Si-hp-βCD (714 mg/g) >Si-αCD (625 mg/g) >Si-βCD (555.6 mg/g)> Si-ϒCD (435 mg/g). Thermodynamic study showed that iodine adsorption is exothermic and spontaneous. Adsorbents reuse exhibited excellent performance for iodine adsorption with a decrease in iodine uptake of ~ 2- 4 % in the third adsorption cycle.

Keywords: adsorption, iodine, silica, cyclodextrin, functionalization, epichlorohydrin

Procedia PDF Downloads 105
913 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 460
912 Effect of Silica Fume at Cellular Sprayed Concrete

Authors: Kyong-Ku Yun, Seung-Yeon Han, Kyeo-Re Lee

Abstract:

Silica fume which is a super-fine byproduct of ferrosilicon or silicon metal has a filling effect on micro-air voids or a transition zone in a hardened cement paste by appropriate mixing, placement, and curing. It, also, has a Pozzolan reaction which enhances the interior density of the hydrated cement paste through a formation of calcium silicate hydroxide. When substituting cement with silica fume, it improves water tightness and durability by filling effect and Pozzolan reaction. However, it needs high range water reducer or super-plasticizer to distribute silica fume into a concrete because of its finesses and high specific surface area. In order to distribute into concrete evenly, cement manufacturers make a pre-blended cement of silica fume and provide to a market. However, a special mixing procedures and another transportation charge another cost and this result in a high price of pre-blended cement of silica fume. The purpose of this dissertation was to investigate the dispersion of silica fume by air slurry and its effect on the mechanical properties of at ready-mixed concrete. The results are as follows: A dispersion effect of silica fume was measured from an analysis of standard deviation for compressive strength test results. It showed that the standard deviation decreased as the air bubble content increased, which means that the dispersion became better as the air bubble content increased. The test result of rapid chloride permeability test showed that permeability resistance increased as the percentages of silica fume increased, but the permeability resistance decreased as the quantity of mixing air bubble increased. The image analysis showed that a spacing factor decreased and a specific surface area increased as the quantity of mixing air bubble increased.

Keywords: cellular sprayed concrete, silica fume, deviation, permeability

Procedia PDF Downloads 113
911 Evaluation of Growth Performance and Survival Rate of African Catfish (Clarias gariepinus) Fed with Graded Levels of Egg Shell Substituted Ration

Authors: A. Bello-Olusoji, M. O. Sodamola, Y. A. Adejola, D. D Akinbola

Abstract:

An eight (8) weeks study was carried out on Four hundred and five (405) African catfish (Clarias gariepinus) juveniles to examine the effect of graded levels of egg shell on their growth performance and survival rates. They were acclimatized for two (2) weeks after which they were weighed and allotted into five dietary treatments of three (3) replicates each and 27 fishes per replicate making a total number of eighty-one (81) fishes per treatment. The dietary treatments contained 0, 25, 50, 75 and 100(%) egg shell inclusion from treatment one to treatment five respectively. Parameter on daily feed intake, weekly weight gain, and daily mortalities were recorded. The result of the experiment indicated that treatment four (4) with 75% inclusion of egg shell was the best in terms of weight gain and survival rates and was significantly different (P<0.05) when compared with the other treatments. For Catfish farming to remain viable in the nearest future, lower feed cost and increased profit are required; it is therefore recommended that diets of African catfish (Clarias gariepinus) be supplemented with well processed egg shell at 75% level of inclusion to achieve this.

Keywords: African catfish, egg shell, performance, performance, survival rate, weight gain

Procedia PDF Downloads 346
910 Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts.

Keywords: bimetallic nanoparticles, core-shell arrangement, mycosynthesis, sequential reduction

Procedia PDF Downloads 543
909 Trions in Semiconductor Quantum Dot System

Authors: Jayden Leonard, Nguyen Que Huong

Abstract:

In this work, we study the Trion state in a spherical quantum dot of a direct band gap semiconductor with a shell of organic material. The electronic structure of the Trion due to degenerate valence band will be considered. The coupling between the wannier exciton inside the dot and the Frenkel exciton in the shell will make the Trion state become hybrid. The competition between “semiconductor” and “organic” phases of the Trion and the transitions between them depend on Parameters of the system such as the materials, the size of the dot and the thickness of the shell, etc… and could be manipulated using those parameters.

Keywords: trion, exciton, quantum dot, heterostructure

Procedia PDF Downloads 146
908 Effect of Process Parameters on Tensile Strength of Aluminum Alloy ADC 10 Produced through Ceramic Shell Investment Casting

Authors: Balwinder Singh

Abstract:

Castings are produced by using aluminum alloy ADC 10 through the process of Ceramic Shell Investment Casting. Experiments are conducted as per the Taguchi L9 orthogonal array. In order to evaluate the effect of process parameters such as mould preheat temperature, preheat time, firing temperature and pouring temperature on surface roughness of ceramic shell investment castings, the Taguchi parameter design and optimization approach is used. Plots of means of significant factors and S/N ratios have been used to determine the best relationship between the responses and model parameters. It is found that the pouring temperature is the most significant factor. The best tensile strength of aluminum alloy ADC 10 is given by 150 ºC shell preheat temperature, 45 minutes preheat time, 900 ºC firing temperature, 650 ºC pouring temperature.

Keywords: investment casting, shell preheat temperature, firing temperature, Taguchi method

Procedia PDF Downloads 149
907 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor

Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly

Abstract:

In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.

Keywords: nano iron, core-shell, reduction reaction, K-M reactor

Procedia PDF Downloads 277
906 Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System

Authors: Mostafa M. Makrahy, Nouby M. Ghazaly, G. T. Abd el-Jaber

Abstract:

This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 μm to 600 μm are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases.

Keywords: disc brake vibration, friction-induced vibration, silica sand particles, brake operational and environmental conditions

Procedia PDF Downloads 116
905 Study of the Influence of the Different Treatments in Almond Shell-Based Masterbatches

Authors: A. Ibáñez, A. Martínez, A. Sánchez, M. A. León

Abstract:

This article is focused on the development of a series of biodegradable and eco-friendly masterbatches based on polylactic acid (PLA) filled with almond shell to study the influence of almond shell in the properties of injected biodegradable parts. These innovative masterbatches have 20 wt % of the almond shell. Different treatments were carried out with sodium hydroxide (NaOH) and maleic anhydride (MA) to obtain better interfacial bonding between fibre and matrix. The masterbatches were produced by varying the fibre treatments (type of treatment, concentration and temperature). The masterbatches have been injected to obtain standardised test samples in order to study mechanical properties. The results show that, the some of the treated fibres present slightly higher flexural modulus and impact strength than untreated fibres. This study is part of a LIFE project (MASTALMOND) aimed to create and test at preindustrial level new coloured masterbatches based on biodegradable polymers and containing in its formulation a high percentage of almond shell, a natural waste material, which firstly will permit to cover technical requirements of two traditional industrial sectors: toy and furniture, although the results achieved could be extended to other industrial sectors.

Keywords: additivation, almond shell, biodegradable, masterbatch, PLA, injection moulding

Procedia PDF Downloads 389
904 Synthesis of Bimetallic Ti-Fe-SBA-15 Using Silatrane

Authors: Ratchadaporn Kaewmuang, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

Mesoporous materials have been used in many applications, such as adsorbent and catalyst. SBA-15, a 2D hexagonal ordered mesoporous silica material, has not only high specific surface area, but also thicker wall, larger pore size, better hydrothermal stability, and mechanical properties than M41s. However, pure SBA-15 still lacks of redox properties. Therefore, bimetallic incorporation into framework is of interest since it can create new active sites. In this work, Ti-Fe-SBA-15 is studied and successfully synthesized via sol-gel process, using silatrane, FeCl3, and titanium (VI) isopropoxide as silica, iron, and titanium sources, respectively. The products are characterized by SAXD, FE-SEM, and N2 adsorption/desorption, DR-UV, and XRF.

Keywords: SBA-15, mesoporous silica, bimetallic, titanium, iron, silatrane

Procedia PDF Downloads 349
903 Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources

Authors: Chanchal Mewar, Shikha Gangil, Yashwant Parihar, Virendra Dhakar, Bharat Modhera

Abstract:

Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min.

Keywords: biodiesel, three step method, purification, silica sources

Procedia PDF Downloads 470
902 Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation

Authors: Mahnoor Khan, Bashir Ahmad, Khizar Hayat, Saad Ahmad Khan, Laiba Ahmad, Shumaila Bashir, Abid Ali Khan

Abstract:

The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT.

Keywords: ZnO, hemolysis, cytotoxiciy assay, photodynamic therapy, antibacterial

Procedia PDF Downloads 107
901 Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash

Authors: Patel Darshan Shaileshkumar, M. G. Vanza

Abstract:

Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved.

Keywords: palm kernel shell ash, black cotton soil, liquid limit, group index, plastic limit, plasticity index

Procedia PDF Downloads 65
900 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves

Authors: Reza Abbasi, Ahmad Hamidi Benam

Abstract:

Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.

Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm

Procedia PDF Downloads 198
899 Efficient Pre-Concentration of As (III) Using Guanidine-Modified Magnetic Mesoporous Silica in the Food Sample

Authors: Majede Modheji, Hamid Emadi, Hossein Vojoudi

Abstract:

An efficient magnetic mesoporous structure was designed and prepared for the facile pre-concentration of As(III) ions. To prepare the sorbent, a core-shell magnetic silica nanoparticle was covered by MCM-41 like structure, and then the surface was modified by guanidine via an amine linker. The prepared adsorbent was investigated as an effective and sensitive material for the adsorption of arsenic ions from the aqueous solution applying a normal batch method. The imperative variables of the adsorption were studied to increase efficiency. The dynamic and static processes were tested that matched a pseudo-second order of kinetic model and the Langmuir isotherm model, respectively. The sorbent reusability was investigated, and it was confirmed that the designed product could be applied at best for six cycles successively without any significant efficiency loss. The synthesized product was tested to determine and pre-concentrate trace amounts of arsenic ions in rice and natural waters as a real sample. A desorption process applying 5 mL of hydrochloric acid (0.5 mol L⁻¹) as an eluent exhibited about 98% recovery of the As(III) ions adsorbed on the GA-MSMP sorbent.

Keywords: arsenic, adsorption, mesoporous, surface modification, MCM-41

Procedia PDF Downloads 122
898 Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?

Authors: Xiaohong Yang, Haitao Fu, Xizhong An, Aibing Yu

Abstract:

Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications.

Keywords: Ag@TiO2 core-shell nanoparticles, Ag surface doped TiO2 nanoparticles, photocatalysis, antibacterial

Procedia PDF Downloads 451
897 A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures

Authors: Djamal Hamadi, Oussama Temami, Abdallah Zatar, Sifeddine Abderrahmani

Abstract:

The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation.

Keywords: displacement formulation, finite elements, strain based approach, shell structures

Procedia PDF Downloads 387
896 Study of Waveguide Silica Glasses by Raman Spectroscopy

Authors: Mohamed Abdelmounim Bakkali, Mustapha El Mataouy, Abellatif Aaliti, Mouhamed Khaddor

Abstract:

In the paper, we study the effects of introducing hafnium oxide on Raman spectra of silica glass planar waveguide activated by 0.3 mol% Er3+ ions. This work compares Raman spectra measured for three thin films deposited on silicon substrate. The films were prepared with different molar ratio of Si/Hf using sol-gel method and deposited by dip coating technique. The effect of hafnium oxide incorporation on the waveguides shows the evolution of the structure of this material. This structural information is useful to understand the luminescence intensity by means of ion–ion interaction mechanisms.

Keywords: optical amplifiers, non-bridging oxygen, erbium, sol-gel, waveguide, silica-hafnia

Procedia PDF Downloads 275
895 Effect of Moringa Oleifera on Liveweight Reproductive Tract Dimention of Giant African Land Snail (Archachatina marginata)

Authors: J. A. Abiona, O. O. Fabinu, O. O. Ehimiyein, A. O. Ladokun, M. O. Abioja, J. O. Daramola, O. E. Oke, O. A. Osinowo, O. M. Onagbesan

Abstract:

A study was conducted on the effect of Moringa oleifera on liveweight and reproductive tract dimension of Giant African Land Snail (Archachatina marginata). Thirty two snails (32) with weight range of 100 – 150 g were used for this study. Eight snails (8) were subjected to each of the four treatments which were: Concentrate only, concentrate + 100g of Moringa oleifera, concentrate + 200g of Moringa oleifera and concentrate + 300g of Moringa oleifera. Parameters monitored were: Shell length, shell width, shell circumference and weekly live weight. Reproductive tract dimension taken include: Organ weight (ORGWT), reproductive tract weight (REPTWT), reproductive tract length (REPTLNT), ovo-tesis weight (OVOWT), edible part weight (EDPTWT), albumen weight (ALBWT) and albumen length (ALBLNT). Shell dimensions and the live weight were measured and recorded on a weekly basis with a tape rule and a sensitive weighing scale. After nine weeks, six snails were randomly selected from each treatment and dissected. Their reproductive tracts were removed and dimensions were taken. The result showed that ORGWT, OVOWT, ALBWT, ALBLNT, REPTLNT and REPTWT were not significantly affected (P>0.05) by different levels of Moringa oleifera inclusions with concentrate. However, Moringa oleifera inclusion with concentrate at different levels had significant effect (P<0.001) on Live weight, shell length and shell diameters of the animal. Snails given 300 g of Moringa oleifera per kilogramme of concentrate gave the highest live weight and shell length together with shell diameter. It was however recommended from this study that inclusion of Moringa oleifera leave meal into snail feed at 300 g per kg of concentrate would enhance live weight and shell parameters (length and width).

Keywords: reproductive tract, giant African land snails, Moringa oleifera, live weight, shell dimension

Procedia PDF Downloads 451
894 Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell

Authors: A. K. Jain, M. C. Paliwal

Abstract:

The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed.

Keywords: greenhouse, egg shell powder, binding material, aggregates, coconut shell, coarse aggregates

Procedia PDF Downloads 216
893 Treatment and Conservation of an Antique Stone Stela by Nano Calcium Hydroxide with Nano Silica in Egyptian Museum of Cairo

Authors: Elhussein Ahmed Elsayed

Abstract:

An ancient limestone stela dating back to the epoch of the middle kingdom and displayed in the exhibition hall of the middle kingdom, it was discovered in Lisht in Giza, registered with No. 3045 and as a result of its display in an inappropriate display as a result of the use of natural lighting in the display, Represented in sunlight through windows opened day and night. The alternation of these daily changes between the temperature degrees of night and day, both daily and seasonally, causes the expansion and contraction of the rocks and then weakens their cohesion, causing fragmentation. This is indeed the current situation of this stela displayed in the hall, in addition to the damage and fading of colors, as well as the use of a high-viscosity restoration material in the consolidation that led to the attraction of dust and dirt and its adhesion to the surface. The color faded as a result of the lack of lighting control inside the exhibition hall, the remnants of the existing colors were blurred as a result of applying a consolidation material with a high viscosity, which led to the attraction of dust and dirt, and then blurring the colors on the inscription. Examinations and analyzes were carried out on the block, and the results of the examination with a polarized microscope showed that it is of primitive limestone, which contains fossils and microorganisms, which helps to damage. The analysis using the Raman device also showed that the high-viscosity material used in restoration in the past is Paralloid B72. The stone stela was consolidated by using two materials; Nano calcium hydroxide with Nano silica in the form of (Core-shell) at a concentration of 10% and it was applied using the brush.

Keywords: Egyptian museum, stone stela, treatment, nano materials, nano silica

Procedia PDF Downloads 54
892 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method

Authors: Ali Rahnamoun, Adri van Duin

Abstract:

The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.

Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica

Procedia PDF Downloads 384