Search results for: reinforced retaining wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2580

Search results for: reinforced retaining wall

30 Photobleaching Kinetics and Epithelial Distribution of Hexylaminoleuilinate Induced PpIX in Rat Bladder Cancer

Authors: Sami El Khatib, Agnès Leroux, Jean-Louis Merlin, François Guillemin, Marie-Ange D’Hallewin

Abstract:

Photodynamic therapy (PDT) is a treatment modality based on the cytotoxic effect occurring on the target tissues by interaction of a photosensitizer with light in the presence of oxygen. One of the major advances in PDT can be attributed to the use of topical aminolevulinic (ALA) to induce Protoporphyrin IX (PpIX) for the treatment of early stage cancers as well as diagnosis. ALA is a precursor of the heme synthesis pathway. Locally delivered to the target tissue ALA overcomes the negative feedback exerted by heme and promotes the transient formation of PpIX in situ to reach critical effective levels in cells and tissue. Whereas early steps of the heme pathway occur in the cytosol, PpIX synthesis is shown to be held in the mitochondrial membranes and PpIX fluorescence is expected to accumulate in close vicinity of the initial building site and to progressively diffuse to the neighboring cytoplasmic compartment or other lipophylic organelles. PpIX is known to be highly reactive and will be degraded when irradiated with light. PpIX photobleaching is believed to be governed by a singlet oxygen mediated mechanism in the presence of oxidized amino acids and proteins. PpIX photobleaching and subsequent spectral phototransformation were described widely in tumor cells incubated in vitro with ALA solution, or ex vivo in human and porcine mucosa superfused with hexylaminolevulinate (hALA). PpIX photobleaching was also studied in vivo, using animal models such as normal or tumor mice skin and orthotopic rat bladder model. Hexyl aminolevulinate a more potent lipophilic derivative of ALA was proposed as an adjunct to standard cystoscopy in the fluorescence diagnosis of bladder cancer and other malignancies. We have previously reported the effectiveness of hALA mediated PDT of rat bladder cancer. Although normal and tumor bladder epithelium exhibit similar fluorescence intensities after intravesical instillation of two hALA concentrations (8 and 16 mM), the therapeutic response at 8mM and 20J/cm2 was completely different from the one observed at 16mM irradiated with the same light dose. Where the tumor is destroyed, leaving the underlying submucosa and muscle intact after an 8 mM instillation, 16mM sensitization and subsequent illumination results in the complete destruction of the underlying bladder wall but leaves the tumor undamaged. The object of the current study is to try to unravel the underlying mechanism for this apparent contradiction. PpIX extraction showed identical amounts of photosensitizer in tumor bearing bladders at both concentrations. Photobleaching experiments revealed mono-exponential decay curves in both situations but with a two times faster decay constant in case of 16mM bladders. Fluorescence microscopy shows an identical fluorescence pattern for normal bladders at both concentrations and tumor bladders at 8mM with bright spots. Tumor bladders at 16 mM exhibit a more diffuse cytoplasmic fluorescence distribution. The different response to PDT with regard to the initial pro-drug concentration can thus be attributed to the different cellular localization.

Keywords: bladder cancer, hexyl-aminolevulinate, photobleaching, confocal fluorescence microscopy

Procedia PDF Downloads 374
29 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level

Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni

Abstract:

In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.

Keywords: tropocollagen, multiscale model, fibrils, knee ligaments

Procedia PDF Downloads 100
28 Signature Bridge Design for the Port of Montreal

Authors: Juan Manuel Macia

Abstract:

The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.

Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability

Procedia PDF Downloads 29
27 Vertebral Artery Dissection Complicating Pregnancy and Puerperium: Case Report and Review of the Literature

Authors: N. Reza Pour, S. Chuah, T. Vo

Abstract:

Background: Vertebral artery dissection (VAD) is a rare complication of pregnancy. It can occur spontaneously or following a traumatic event. The pathogenesis is unclear. Predisposing factors include chronic hypertension, Marfan’s syndrome, fibromuscular dysplasia, vasculitis and cystic medial necrosis. Physiological changes of pregnancy have also been proposed as potential mechanisms of injury to the vessel wall. The clinical presentation varies and it can present as a headache, neck pain, diplopia, transient ischaemic attack, or an ischemic stroke. Isolated cases of VAD in pregnancy and puerperium have been reported in the literature. One case was found to have posterior circulation stroke as a result of bilateral VAD and labour was induced at 37 weeks gestation for preeclampsia. Another patient at 38 weeks with severe neck pain that persisted after induction for elevated blood pressure and arteriography showed right VAD postpartum. A single case of lethal VAD in pregnancy with subsequent massive subarachnoid haemorrhage has been reported which was confirmed by the autopsy. Case Presentation: We report two cases of vertebral artery dissection in pregnancy. The first patient was a 32-year-old primigravida presented at the 38th week of pregnancy with the onset of early labour and blood pressure (BP) of 130/70 on arrival. After 2 hours, the patient developed a severe headache with blurry vision and BP was 238/120. Despite treatment with an intravenous antihypertensive, she had eclamptic fit. Magnesium solfate was started and Emergency Caesarean Section was performed under the general anaesthesia. On the second day after the operation, she developed left-sided neck pain. Magnetic Resonance Imaging (MRI) angiography confirmed a short segment left vertebral artery dissection at the level of C3. The patient was treated with aspirin and remained stable without any neurological deficit. The second patient was a 33-year-old primigavida who was admitted to the hospital at 36 weeks gestation with BP of 155/105, constant headache and visual disturbances. She was medicated with an oral antihypertensive agent. On day 4, she complained of right-sided neck pain. MRI angiogram revealed a short segment dissection of the right vertebral artery at the C2-3 level. Pregnancy was terminated on the same day with emergency Caesarean Section and anticoagulation was started subsequently. Post-operative recovery was complicated by rectus sheath haematoma requiring evacuation. She was discharged home on Aspirin without any neurological sequelae. Conclusion: Because of collateral circulation, unilateral vertebral artery dissections may go unrecognized and may be more common than suspected. The outcome for most patients is benign, reflecting the adequacy of the collateral circulation in young patients. Spontaneous VAD is usually treated with anticoagulation or antiplatelet therapy for a minimum of 3-6 months to prevent future ischaemic events, allowing the dissection to heal on its own. We had two cases of VAD in the context of hypertensive disorders of pregnancy with an acceptable outcome. A high level of vigilance is required particularly with preeclamptic patients presenting with head/neck pain to allow an early diagnosis. This is as we hypothesize, early and aggressive management of vertebral artery dissection may potentially prevent further complications.

Keywords: eclampsia, preeclampsia, pregnancy, Vertebral Artery Dissection

Procedia PDF Downloads 248
26 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 121
25 Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures.

Keywords: ductile-to-brittle transition temperature (DBTT), EUROFER, reduced activation ferritic/martensitic (RAFM) steels, thermal treatments

Procedia PDF Downloads 266
24 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering

Authors: Emre Kara, Ali Kurşun, Halil Aykul

Abstract:

The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.

Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application

Procedia PDF Downloads 310
23 Antimicrobial, Antioxidant and Enzyme Activities of Geosmithia pallida (KU693285): A Fungal Endophyte Associated with Brucea mollis Wall Ex. Kurz, an Endangered and Medicinal Plant of N. E. India

Authors: Deepanwita Deka, Dhruva Kumar Jha

Abstract:

Endophytes are the microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects. Endophytes are rich source of therapeutic substances like antimicrobial, anticancerous, herbicidal, insecticidal, immunomodulatory compounds. Brucea mollis, commonly known as Quinine in Assam, belonging to the family Simaroubaceae, is a shrub or small tree, recorded as endangered species in North East India by CAMP survey in 2003. It is traditionally being used as antimalarial and antimicrobial agent and has antiplasmodial, cytotoxic, anticancer, diuretic, cardiovascular effect etc. Being endangered and medicinal; this plant may host certain noble endophytes which need to be studied in depth. The aim of the present study was isolation and identification of potent endophytic fungi from Brucea mollis, an endangered medicinal plant, to protect it from extinction due to over use for medicinal purposes. Aseptically collected leaves, barks and roots samples of healthy plants were washed and cut into a total of 648 segments of about 2 cm long and 0.5 cm broad with sterile knife, comprising 216 segments each from leaves, barks and roots. These segments were surface sterilized using ethanol, mercuric chloride (HgCl2) and aqueous solution of sodium hypochlorite (NaClO). Different media viz., Czapeck-Dox-Agar (CDA, Himedia), Potato-Dextrose-Agar (PDA, Himedia), Malt Extract Agar (MEA, Himedia), Sabourad Dextrose Agar (SDA, Himedia), V8 juice agar, nutrient agar and water agar media and media amended with plant extracts were used separately for the isolation of the endophytic fungi. A total of 11 fungal species were recovered from leaf, bark and root tissues of B. mollis. The isolates were screened for antimicrobial, antioxidant and enzymatic activities using certain protocols. Cochliobolus geniculatus was identified as the most dominant species. The mycelia sterilia (creamy white) showing highest inhibitory activity against Candida albicans (MTCC 183) was induced to sporulate using modified PDA media. The isolate was identified as Geosmithia pallida. The internal transcribed spacer of rDNA was sequenced for confirmation of the taxonomic identity of the sterile mycelia (creamy white). The internal transcribed spacer r-DNA sequence was submitted to the NCBI (KU693285) for the first time from India. G. pallida and Penicillium showed highest antioxidant activity among all the isolates. The antioxidant activity of G. pallida and Penicillium didn’t show statistically significant difference (P˃0.05). G. pallida, Cochliobolus geniculatus and P. purpurogenum respectively showed highest cellulase, amylase and protease activities. Thus, endopytic fungal isolates may be used as potential natural resource of pharmaceutical importance. The endophytic fungi, Geosmithia pallida, may be used for synthesis of pharmaceutically important natural products and consequently can replace plants hitherto used for the same purpose. This study suggests that endophytes should be investigated more aggressively to better understand the endophyte biology of B. mollis.

Keywords: Antimicrobial activity, antioxidant activity, Brucea mollis, endophytic fungi, enzyme activity, Geosmithia pallida

Procedia PDF Downloads 150
22 Benzenepropanamine Analogues as Non-detergent Microbicidal Spermicide for Effective Pre-exposure Prophylaxis

Authors: Veenu Bala, Yashpal S. Chhonker, Bhavana Kushwaha, Rabi S. Bhatta, Gopal Gupta, Vishnu L. Sharma

Abstract:

According to UNAIDS 2013 estimate nearly 52% of all individuals living with HIV are now women of reproductive age (15–44 years). Seventy-five percent cases of HIV acquisition are through heterosexual contacts and sexually transmitted infections (STIs), attributable to unsafe sexual behaviour. Each year, an estimated 500 million people acquire atleast one of four STIs: chlamydia, gonorrhoea, syphilis and trichomoniasis. Trichomonas vaginalis (TV) is exclusively sexually transmitted in adults, accounting for 30% of STI cases and associated with pelvic inflammatory disease (PID), vaginitis and pregnancy complications in women. TV infection resulted in impaired vaginal milieu, eventually favoring HIV transmission. In the absence of an effective prophylactic HIV vaccine, prevention of new infections has become a priority. It was thought worthwhile to integrate HIV prevention and reproductive health services including unintended pregnancy protection for women as both are related with unprotected sex. Initially, nonoxynol-9 (N-9) had been proposed as a spermicidal agent with microbicidal activity but on the contrary it increased HIV susceptibility due to surfactant action. Thus, to accomplish an urgent need of novel woman controlled non-detergent microbicidal spermicides benzenepropanamine analogues have been synthesized. At first, five benzenepropanamine-dithiocarbamate hybrids have been synthesized and evaluated for their spermicidal, anti-Trichomonas and anti-fungal activities along with safety profiling to cervicovaginal cells. In order to further enhance the scope of above study benzenepropanamine was hybridized with thiourea as to introduce anti-HIV potential. The synthesized hybrid molecules were evaluated for their reverse transcriptase (RT) inhibition, spermicidal, anti-Trichomonas and antimicrobial activities as well as their safety against vaginal flora and cervical cells. simulated vaginal fluid (SVF) stability and pharmacokinetics of most potent compound versus N-9 was examined in female Newzealand (NZ) rabbits to observe its absorption into systemic circulation and subsequent exposure in blood plasma through vaginal wall. The study resulted in the most promising compound N-butyl-4-(3-oxo-3-phenylpropyl) piperazin-1-carbothioamide (29) exhibiting better activity profile than N-9 as it showed RT inhibition (72.30 %), anti-Trichomonas (MIC, 46.72 µM against MTZ susceptible and MIC, 187.68 µM against resistant strain), spermicidal (MEC, 0.01%) and antifungal activity (MIC, 3.12–50 µg/mL) against four fungal strains. The high safety against vaginal epithelium (HeLa cells) and compatibility with vaginal flora (lactobacillus), SVF stability and least vaginal absorption supported its suitability for topical vaginal application. Docking study was performed to gain an insight into the binding mode and interactions of the most promising compound, N-butyl-4-(3-oxo-3-phenylpropyl) piperazin-1-carbothioamide (29) with HIV-1 Reverse Transcriptase. The docking study has revealed that compound (29) interacted with HIV-1 RT similar to standard drug Nevirapine. It may be concluded that hybridization of benzenepropanamine and thiourea moiety resulted into novel lead with multiple activities including RT inhibition. A further lead optimization may result into effective vaginal microbicides having spermicidal, anti-Trichomonas, antifungal and anti-HIV potential altogether with enhanced safety to cervico-vaginal cells in comparison to Nonoxynol-9.

Keywords: microbicidal, nonoxynol-9, reverse transcriptase, spermicide

Procedia PDF Downloads 321
21 Technological Transference Tools to Diffuse Low-Cost Earthquake Resistant Construction with Adobe in Rural Areas of the Peruvian Andes

Authors: Marcial Blondet, Malena Serrano, Álvaro Rubiños, Elin Mattsson

Abstract:

In Peru, there are more than two million houses made of adobe (sun dried mud bricks) or rammed earth (35% of the total houses), in which almost 9 million people live, mainly because they cannot afford to purchase industrialized construction materials. Although adobe houses are cheap to build and thermally comfortable, their seismic performance is very poor, and they usually suffer significant damage or collapse with tragic loss of life. Therefore, over the years, researchers at the Pontifical Catholic University of Peru and other institutions have developed many reinforcement techniques as an effort to improve the structural safety of earthen houses located in seismic areas. However, most rural communities live under unacceptable seismic risk conditions because these techniques have not been adopted massively, mainly due to high cost and lack of diffusion. The nylon rope mesh reinforcement technique is simple and low-cost, and two technological transference tools have been developed to diffuse it among rural communities: 1) Scale seismic simulations using a portable shaking table have been designed to prove its effectiveness to protect adobe houses; 2) A step-by-step illustrated construction manual has been developed to guide the complete building process of a nylon rope mesh reinforced adobe house. As a study case, it was selected the district of Pullo: a small rural community in the Peruvian Andes where more than 80% of its inhabitants live in adobe houses and more than 60% are considered to live in poverty or extreme poverty conditions. The research team carried out a one-day workshop in May 2015 and a two-day workshop in September 2015. Results were positive: First, the nylon rope mesh reinforcement procedure was proven simple enough to be replicated by adults, both young and seniors, and participants handled ropes and knots easily as they use them for daily livestock activity. In addition, nylon ropes were proven highly available in the study area as they were found at two local stores in variety of color and size.. Second, the portable shaking table demonstration successfully showed the effectiveness of the nylon rope mesh reinforcement and generated interest on learning about it. On the first workshop, more than 70% of the participants were willing to formally subscribe and sign up for practical training lessons. On the second workshop, more than 80% of the participants returned the second day to receive introductory practical training. Third, community members found illustrations on the construction manual simple and friendly but the roof system illustrations led to misinterpretation so they were improved. The technological transfer tools developed in this project can be used to train rural dwellers on earthquake-resistant self-construction with adobe, which is still very common in the Peruvian Andes. This approach would allow community members to develop skills and capacities to improve safety of their households on their own, thus, mitigating their high seismic risk and preventing tragic losses. Furthermore, proper training in earthquake-resistant self-construction with adobe would prevent rural dwellers from depending on external aid after an earthquake and become agents of their own development.

Keywords: adobe, Peruvian Andes, safe housing, technological transference

Procedia PDF Downloads 266
20 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather

Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour

Abstract:

The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati Tropical

Keywords: energyplus, multi-layer of PCM, phase changing materials, tropical area

Procedia PDF Downloads 61
19 Extension of Moral Agency to Artificial Agents

Authors: Sofia Quaglia, Carmine Di Martino, Brendan Tierney

Abstract:

Artificial Intelligence (A.I.) constitutes various aspects of modern life, from the Machine Learning algorithms predicting the stocks on Wall streets to the killing of belligerents and innocents alike on the battlefield. Moreover, the end goal is to create autonomous A.I.; this means that the presence of humans in the decision-making process will be absent. The question comes naturally: when an A.I. does something wrong when its behavior is harmful to the community and its actions go against the law, which is to be held responsible? This research’s subject matter in A.I. and Robot Ethics focuses mainly on Robot Rights and its ultimate objective is to answer the questions: (i) What is the function of rights? (ii) Who is a right holder, what is personhood and the requirements needed to be a moral agent (therefore, accountable for responsibility)? (iii) Can an A.I. be a moral agent? (ontological requirements) and finally (iv) if it ought to be one (ethical implications). With the direction to answer this question, this research project was done via a collaboration between the School of Computer Science in the Technical University of Dublin that oversaw the technical aspects of this work, as well as the Department of Philosophy in the University of Milan, who supervised the philosophical framework and argumentation of the project. Firstly, it was found that all rights are positive and based on consensus; they change with time based on circumstances. Their function is to protect the social fabric and avoid dangerous situations. The same goes for the requirements considered necessary to be a moral agent: those are not absolute; in fact, they are constantly redesigned. Hence, the next logical step was to identify what requirements are regarded as fundamental in real-world judicial systems, comparing them to that of ones used in philosophy. Autonomy, free will, intentionality, consciousness and responsibility were identified as the requirements to be considered a moral agent. The work went on to build a symmetrical system between personhood and A.I. to enable the emergence of the ontological differences between the two. Each requirement is introduced, explained in the most relevant theories of contemporary philosophy, and observed in its manifestation in A.I. Finally, after completing the philosophical and technical analysis, conclusions were drawn. As underlined in the research questions, there are two issues regarding the assignment of moral agency to artificial agent: the first being that all the ontological requirements must be present and secondly being present or not, whether an A.I. ought to be considered as an artificial moral agent. From an ontological point of view, it is very hard to prove that an A.I. could be autonomous, free, intentional, conscious, and responsible. The philosophical accounts are often very theoretical and inconclusive, making it difficult to fully detect these requirements on an experimental level of demonstration. However, from an ethical point of view it makes sense to consider some A.I. as artificial moral agents, hence responsible for their own actions. When considering artificial agents as responsible, there can be applied already existing norms in our judicial system such as removing them from society, and re-educating them, in order to re-introduced them to society. This is in line with how the highest profile correctional facilities ought to work. Noticeably, this is a provisional conclusion and research must continue further. Nevertheless, the strength of the presented argument lies in its immediate applicability to real world scenarios. To refer to the aforementioned incidents, involving the murderer of innocents, when this thesis is applied it is possible to hold an A.I. accountable and responsible for its actions. This infers removing it from society by virtue of its un-usability, re-programming it and, only when properly functioning, re-introducing it successfully

Keywords: artificial agency, correctional system, ethics, natural agency, responsibility

Procedia PDF Downloads 155
18 Residential Building Facade Retrofit

Authors: Galit Shiff, Yael Gilad

Abstract:

The need to retrofit old buildings lies in the fact that buildings are responsible for the main energy use and CO₂ emission. Existing old structures are more dominant in their effect than new energy-efficient buildings. Nevertheless not every case of urban renewal that aims to replace old buildings with new neighbourhoods necessarily has a financial or sustainable justification. Façade design plays a vital role in the building's energy performance and the unit's comfort conditions. A retrofit façade residential methodology and feasibility applicative study has been carried out for the past four years, with two projects already fully renovated. The intention of this study is to serve as a case study for limited budget façade retrofit in Mediterranean climate urban areas. The two case study buildings are set in Israel. However, they are set in different local climatic conditions. One is in 'Sderot' in the south of the country, and one is in' Migdal Hahemek' in the north of the country. The building typology is similar. The budget of the projects is around $14,000 per unit and includes interventions at the buildings' envelope while tenants are living in. Extensive research and analysis of the existing conditions have been done. The building's components, materials and envelope sections were mapped, examined and compared to relevant updated standards. Solar radiation simulations for the buildings in their surroundings during winter and summer days were done. The energy rate of each unit, as well as the building as a whole, was calculated according to the Israeli Energy Code. The buildings’ facades were documented with the use of a thermal camera during different hours of the day. This information was superimposed with data about the electricity use and the thermal comfort that was collected from the residential units. Later in the process, similar tools were further used in order to compare the effectiveness of different design options and to evaluate the chosen solutions. Both projects showed that the most problematic units were the ones below the roof and the ones on top of the elevated entrance floor (pilotis). Old buildings tend to have poor insulation on those two horizontal surfaces which require treatment. Different radiation levels and wall sections in the two projects influenced the design strategies: In the southern project, there was an extreme difference in solar radiations levels between the main façade and the back elevation. Eventually, it was decided to invest in insulating the main south-west façade and the side façades, leaving the back north-east façade almost untouched. Lower levels of radiation in the northern project led to a different tactic: a combination of basic insulation on all façades, together with intense treatment on areas with problematic thermal behavior. While poor execution of construction details and bad installation of windows in the northern project required replacing them all, in the southern project it was found that it is more essential to shade the windows than replace them. Although the buildings and the construction typology was chosen for this study are similar, the research shows that there are large differences due to the location in different climatic zones and variation in local conditions. Therefore, in order to reach a systematic and cost-effective method of work, a more extensive catalogue database is needed. Such a catalogue will enable public housing companies in the Mediterranean climate to promote massive projects of renovating existing old buildings, drawing on minimal analysis and planning processes.

Keywords: facade, low budget, residential, retrofit

Procedia PDF Downloads 173
17 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 33
16 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 109
15 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm

Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal

Abstract:

The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.

Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater

Procedia PDF Downloads 244
14 Post COVID-19 Multi-System Inflammatory Syndrome Masquerading as an Acute Abdomen

Authors: Ali Baker, Russel Krawitz

Abstract:

This paper describes a rare occurrence where a potentially fatal complication of COVID-19 infection (MIS-A) was misdiagnosed as an acute abdomen. As most patients with this syndrome present with fever and gastrointestinal symptoms, they may inadvertently fall under the care of the surgical unit. However, unusual imaging findings and a poor response to anti-microbial therapy should prompt clinicians to suspect a non-surgical etiology. More than half of MIS-A patients require ICU admission and vasopressor support. Prompt referral to a physician is key, as the cornerstone of treatment is IVIG and corticosteroid therapy. A 32 year old woman presented with right sided abdominal pain and fevers. She had also contracted COVID-19 two months earlier. Abdominal examination revealed generalised right sided tenderness. The patient had raised inflammatory markers, but other blood tests were unremarkable. CT scan revealed extensive lymphadenopathy along the ileocolic chain. The patient proved to be a diagnostic dilemma. She was reviewed by several surgical consultants and discussed with several inpatient teams. Although IV antibiotics were commenced, the right sided abdominal pain, and fevers persisted. Pan-culture returned negative. A mild cholestatic derangement developed. On day 5, the patient underwent preparation for colonoscopy to assess for a potential intraluminal etiology. The following day, the patient developed sinus tachycardia and hypotension that was refractory to fluid resuscitation. That patient was transferred to ICU and required vasopressor support. Repeat CT showed peri-portal edema and a thickened gallbladder wall. On re-examination, the patient was Murphy’s sign positive. Biliary ultrasound was equivocal for cholecystitis. The patient was planned for diagnostic laparoscopy. The following morning, a marked rise in cardiac troponin was discovered, and a follow-up echocardiogram revealed moderate to severe global systolic dysfunction. The impression was post-COVID MIS with myocardial involvement. IVIG and Methylprednisolone infusions were commenced. The patient had a great response. Vasopressor support was weaned, and the patient was discharged from ICU. The patient continued to improve clinically with oral prednisolone, and was discharged on day 17. Although MIS following COVID-19 infection is well-described syndrome in children, only recently has it come to light that it can occur in adults. The exact incidence is unknown, but it is thought to be rare. A recent systematic review found only 221 cases of MIS-A, which could be included for analysis. Symptoms vary, but the most frequent include fever, gastrointestinal, and mucocutaneous. Many patients progress to multi-organ failure and require vasopressor support. 7% succumb to the illness. The pathophysiology of MIS is only partly understood. It shares similarities with Kawasaki disease, macrophage activation syndrome, and cytokine release syndrome. Importantly, by definition, the patient must have an absence of severe respiratory symptoms. It is thought to be due to a dysregulated immune response to the virus. Potential mechanisms include reduced levels of neutralising antibodies and autoreactive antibodies that promote inflammation. Further research into MIS-A is needed. Although rare, this potentially fatal syndrome should be considered in the unwell surgical patient who has recently contracted COVID-19 and poses a diagnostic dilemma.

Keywords: acute-abdomen, MIS, COVID-19, ICU

Procedia PDF Downloads 95
13 Microstructural Characterization of Bitumen/Montmorillonite/Isocyanate Composites by Atomic Force Microscopy

Authors: Francisco J. Ortega, Claudia Roman, Moisés García-Morales, Francisco J. Navarro

Abstract:

Asphaltic bitumen has been largely used in both industrial and civil engineering, mostly in pavement construction and roofing membrane manufacture. However, bitumen as such is greatly susceptible to temperature variations, and dramatically changes its in-service behavior from a viscoelastic liquid, at medium-high temperatures, to a brittle solid at low temperatures. Bitumen modification prevents these problems and imparts improved performance. Isocyanates like polymeric MDI (mixture of 4,4′-diphenylmethane di-isocyanate, 2,4’ and 2,2’ isomers, and higher homologues) have shown to remarkably enhance bitumen properties at the highest in-service temperatures expected. This comes from the reaction between the –NCO pendant groups of the oligomer and the most polar groups of asphaltenes and resins in bitumen. In addition, oxygen diffusion and/or UV radiation may provoke bitumen hardening and ageing. With the purpose of minimizing these effects, nano-layered-silicates (nanoclays) are increasingly being added to bitumen formulations. Montmorillonites, a type of naturally occurring mineral, may produce a nanometer scale dispersion which improves bitumen thermal, mechanical and barrier properties. In order to increase their lipophilicity, these nanoclays are normally treated so that organic cations substitute the inorganic cations located in their intergallery spacing. In the present work, the combined effect of polymeric MDI and the commercial montmorillonite Cloisite® 20A was evaluated. A selected bitumen with penetration within the range 160/220 was modified with 10 wt.% Cloisite® 20A and 2 wt.% polymeric MDI, and the resulting ternary composites were characterized by linear rheology, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The rheological tests evidenced a notable solid-like behavior at the highest temperatures studied when bitumen was just loaded with 10 wt.% Cloisite® 20A and high-shear blended for 20 minutes. However, if polymeric MDI was involved, the sequence of addition exerted a decisive control on the linear rheology of the final ternary composites. Hence, in bitumen/Cloisite® 20A/polymeric MDI formulations, the previous solid-like behavior disappeared. By contrast, an inversion in the order of addition (bitumen/polymeric MDI/ Cloisite® 20A) enhanced further the solid-like behavior imparted by the nanoclay. In order to gain a better understanding of the factors that govern the linear rheology of these ternary composites, a morphological and microstructural characterization based on XRD and AFM was conducted. XRD demonstrated the existence of clay stacks intercalated by bitumen molecules to some degree. However, the XRD technique cannot provide detailed information on the extent of nanoclay delamination, unless the entire fraction has effectively been fully delaminated (situation in which no peak is observed). Furthermore, XRD was unable to provide precise knowledge neither about the spatial distribution of the intercalated/exfoliated platelets nor about the presence of other structures at larger length scales. In contrast, AFM proved its power at providing conclusive information on the morphology of the composites at the nanometer scale and at revealing the structural modification that yielded the rheological properties observed. It was concluded that high-shear blending brought about a nanoclay-reinforced network. As for the bitumen/Cloisite® 20A/polymeric MDI formulations, the solid-like behavior was destroyed as a result of the agglomeration of the nanoclay platelets promoted by chemical reactions.

Keywords: Atomic Force Microscopy, bitumen, composite, isocyanate, montmorillonite.

Procedia PDF Downloads 231
12 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 136
11 Internet of Assets: A Blockchain-Inspired Academic Program

Authors: Benjamin Arazi

Abstract:

Blockchain is the technology behind cryptocurrencies like Bitcoin. It revolutionizes the meaning of trust in the sense of offering total reliability without relying on any central entity that controls or supervises the system. The Wall Street Journal states: “Blockchain Marks the Next Step in the Internet’s Evolution”. Blockchain was listed as #1 in Linkedin – The Learning Blog “most in-demand hard skills needed in 2020”. As stated there: “Blockchain’s novel way to store, validate, authorize, and move data across the internet has evolved to securely store and send any digital asset”. GSMA, a leading Telco organization of mobile communications operators, declared that “Blockchain has the potential to be for value what the Internet has been for information”. Motivated by these seminal observations, this paper presents the foundations of a Blockchain-based “Internet of Assets” academic program that joins under one roof leading application areas that are characterized by the transfer of assets over communication lines. Two such areas, which are pillars of our economy, are Fintech – Financial Technology and mobile communications services. The next application in line is Healthcare. These challenges are met based on available extensive professional literature. Blockchain-based assets communication is based on extending the principle of Bitcoin, starting with the basic question: If digital money that travels across the universe can ‘prove its own validity’, can this principle be applied to digital content. A groundbreaking positive answer here led to the concept of “smart contract” and consequently to DLT - Distributed Ledger Technology, where the word ‘distributed’ relates to the non-existence of reliable central entities or trusted third parties. The terms Blockchain and DLT are frequently used interchangeably in various application areas. The World Bank Group compiled comprehensive reports, analyzing the contribution of DLT/Blockchain to Fintech. The European Central Bank and Bank of Japan are engaged in Project Stella, “Balancing confidentiality and auditability in a distributed ledger environment”. 130 DLT/Blockchain focused Fintech startups are now operating in Switzerland. Blockchain impact on mobile communications services is treated in detail by leading organizations. The TM Forum is a global industry association in the telecom industry, with over 850 member companies, mainly mobile operators, that generate US$2 trillion in revenue and serve five billion customers across 180 countries. From their perspective: “Blockchain is considered one of the digital economy’s most disruptive technologies”. Samples of Blockchain contributions to Fintech (taken from a World Bank document): Decentralization and disintermediation; Greater transparency and easier auditability; Automation & programmability; Immutability & verifiability; Gains in speed and efficiency; Cost reductions; Enhanced cyber security resilience. Samples of Blockchain contributions to the Telco industry. Establishing identity verification; Record of transactions for easy cost settlement; Automatic triggering of roaming contract which enables near-instantaneous charging and reduction in roaming fraud; Decentralized roaming agreements; Settling accounts per costs incurred in accordance with agreement tariffs. This clearly demonstrates an academic education structure where fundamental technologies are studied in classes together with these two application areas. Advanced courses, treating specific implementations then follow separately. All are under the roof of “Internet of Assets”.

Keywords: blockchain, education, financial technology, mobile telecommunications services

Procedia PDF Downloads 148
10 Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics

Authors: Camille Perréard, Yoann Ladner, Fanny D'Orlyé, Stéphanie Descroix, Vélan Taniga, Anne Varenne, Cédric Guyon, Michael. Tatoulian, Frédéric Kanoufi, Cyrine Slim, Sophie Griveau, Fethi Bedioui

Abstract:

The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare.

Keywords: alkyne-azide click chemistry (CuAAC), electrochemical modification, microsystem, plasma bromination, surface functionalization, thermoplastic polymers

Procedia PDF Downloads 413
9 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 161
8 Pathomorphological Markers of the Explosive Wave Action on Human Brain

Authors: Sergey Kozlov, Juliya Kozlova

Abstract:

Introduction: The increased attention of researchers to an explosive trauma around the world is associated with a constant renewal of military weapons and a significant increase in terrorist activities using explosive devices. Explosive wave is a well known damaging factor of explosion. The most sensitive to the action of explosive wave in the human body are the head brain, lungs, intestines, urine bladder. The severity of damage to these organs depends on the distance from the explosion epicenter to the object, the power of the explosion, presence of barriers, parameters of the body position, and the presence of protective clothing. One of the places where a shock wave acts, in human tissues and organs, is the vascular endothelial barrier, which suffers the greatest damage in the head brain and lungs. The objective of the study was to determine the pathomorphological changes of the head brain followed the action of explosive wave. Materials and methods of research: To achieve the purpose of the study, there have been studied 6 male corpses delivered to the morgue of Municipal Institution "Dnipropetrovsk regional forensic bureau" during 2014-2016 years. The cause of death of those killed was a military explosive injury. After a visual external assessment of the head brain, for histological study there was conducted the 1 x 1 x 1 cm/piece sampling from different parts of the head brain, i.e. the frontal, parietal, temporal, occipital sites, and also from the cerebellum, pons, medulla oblongata, thalamus, walls of the lateral ventricles, the bottom of the 4th ventricle. Pieces of the head brain were immersed in 10% formalin solution for 24 hours. After fixing, the paraffin blocks were made from the material using the standard method. Then, using a microtome, there were made sections of 4-6 micron thickness from paraffin blocks which then were stained with hematoxylin and eosin. Microscopic analysis was performed using a light microscope with x4, x10, x40 lenses. Results of the study: According to the results of our study, injuries of the head brain were divided into macroscopic and microscopic. Macroscopic injuries were marked according to the results of visual assessment of haemorrhages under the membranes and into the substance, their nature, and localisation, areas of softening. In the microscopic study, our attention was drawn to both vascular changes and those of neurons and glial cells. Microscopic qualitative analysis of histological sections of different parts of the head brain revealed a number of structural changes both at the cellular and tissue levels. Typical changes in most of the studied areas of the head brain included damages of the vascular system. The most characteristic microscopic sign was the separation of vascular walls from neuroglia with the formation of perivascular space. Along with this sign, wall fragmentation of these vessels, haemolysis of erythrocytes, formation of haemorrhages in the newly formed perivascular spaces were found. In addition to damages of the cerebrovascular system, destruction of the neurons, presence of oedema of the brain tissue were observed in the histological sections of the brain. On some sections, the head brain had a heterogeneous step-like or wave-like nature. Conclusions: The pathomorphological microscopic changes in the brain, identified in the study on the died of explosive traumas, can be used for diagnostic purposes in conjunction with other characteristic signs of explosive trauma in forensic and pathological studies. The complex of microscopic signs in the head brain, i.e. separation of blood vessel walls from neuroglia with the perivascular space formation, fragmentation of walls of these blood vessels, erythrocyte haemolysis, formation of haemorrhages in the newly formed perivascular spaces is the direct indication of explosive wave action.

Keywords: blast wave, neurotrauma, human, brain

Procedia PDF Downloads 161
7 Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions

Authors: Ling Ai, Ziyu Zhao, Zeyu Zhou, Xiaochen Yang, Heng Zhai, Stuart Holmes

Abstract:

Optimizing the catalyst layer structure is crucial for enhancing the performance of proton exchange membrane fuel cells (PEMFCs) with low Platinum (Pt) loading. Current works focused on the utilization, durability, and site activity of Pt particles on support, and performance enhancement has been achieved by loading Pt onto porous support with different morphology, such as graphene, carbon fiber, and carbon black. Some schemes have also incorporated cost considerations to achieve lower Pt loading. However, the design of the catalyst layer (CL) structure in the membrane electrode assembly (MEA) must consider the interactions between the layers. Addressing the crucial aspects of water management, low contact resistance, and the establishment of effective three-phase boundary for MEA, multi-walled carbon nanotubes (MWCNTs) are promising CL support due to their intrinsically high hydrophobicity, high axial electrical conductivity, and potential for ordered alignment. However, the drawbacks of MWCNTs, such as strong agglomeration, wall surface chemical inertness, and unopened ends, are unfavorable for Pt nanoparticle loading, which is detrimental to MEA processing and leads to inhomogeneous CL surfaces. This further deteriorates the utilization of Pt and increases the contact resistance. Robust chemical oxidation or nitrogen doping can introduce polar functional groups onto the surface of MWCNTs, facilitating the creation of open tube ends and inducing defects in tube walls. This improves dispersibility and load capacity but reduces length and conductivity. Consequently, a trade-off exists between maintaining the intrinsic properties and the degree of functionalization of MWCNTs. In this work, MWCNTs were modified based on the operational requirements of the MEA from the viewpoint of interlayer interactions, including the search for the optimal degree of oxidation, N-doping, and micro-arrangement. MWCNT were functionalized by oxidizing, N-doping, as well as micro-alignment to achieve lower contact resistance between CL and proton exchange membrane (PEM), better hydrophobicity, and enhanced performance. Furthermore, this work expects to construct a more continuously distributed three-phase boundary by aligning MWCNT to form a locally ordered structure, which is essential for the efficient utilization of Pt active sites. Different from other chemical oxidation schemes that used HNO3:H2SO4 (1:3) mixed acid to strongly oxidize MWCNT, this scheme adopted pure HNO3 to partially oxidize MWCNT at a lower reflux temperature (80 ℃) and a shorter treatment time (0 to 10 h) to preserve the morphology and intrinsic conductivity of MWCNT. The maximum power density of 979.81 mw cm-2 was achieved by Pt loading on 6h MWCNT oxidation time (Pt-MWCNT6h). This represented a 59.53% improvement over the commercial Pt/C catalyst of 614.17 (mw cm-2). In addition, due to the stronger electrical conductivity, the charge transfer resistance of Pt-MWCNT6h in the electrochemical impedance spectroscopy (EIS) test was 0.09 Ohm cm-2, which was 48.86% lower than that of Pt/C. This study will discuss the developed catalysts and their efficacy in a working fuel cell system. This research will validate the impact of low-functionalization modification of MWCNTs on the performance of PEMFC, which simplifies the preparation challenges of CL and contributing for the widespread commercial application of PEMFCs on a larger scale.

Keywords: carbon nanotubes, electrocatalyst, membrane electrode assembly, proton exchange membrane fuel cell

Procedia PDF Downloads 32
6 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System

Authors: K. Kamal

Abstract:

Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.

Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units

Procedia PDF Downloads 146
5 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases

Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo

Abstract:

The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.

Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis

Procedia PDF Downloads 184
4 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice

Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath

Abstract:

Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.

Keywords: amifostine, fibrosis, inflammation, lung injury radiation

Procedia PDF Downloads 481
3 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration

Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu

Abstract:

The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.

Keywords: porphyry, gold, geochronology, magnetic, exploration

Procedia PDF Downloads 18
2 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 240
1 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom

Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap

Abstract:

The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.

Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity

Procedia PDF Downloads 27