Search results for: network diagnostic tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9852

Search results for: network diagnostic tool

9852 Diagnostic Assessment for Mastery Learning of Engineering Students with a Bayesian Network Model

Authors: Zhidong Zhang, Yingchen Yang

Abstract:

In this study, a diagnostic assessment model for Mastery Engineering Learning was established based on a group of undergraduate students who studied in an engineering course. A diagnostic assessment model can examine both students' learning process and report achievement results. One very unique characteristic is that the diagnostic assessment model can recognize the errors and anything blocking students in their learning processes. The feedback is provided to help students to know how to solve the learning problems with alternative strategies and help the instructor to find alternative pedagogical strategies in the instructional designs. Dynamics is a core course in which is a common course being shared by several engineering programs. This course is a very challenging for engineering students to solve the problems. Thus knowledge acquisition and problem-solving skills are crucial for student success. Therefore, developing an effective and valid assessment model for student learning are of great importance. Diagnostic assessment is such a model which can provide effective feedback for both students and instructor in the mastery of engineering learning.

Keywords: diagnostic assessment, mastery learning, engineering, bayesian network model, learning processes

Procedia PDF Downloads 126
9851 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)

Authors: Mohamed Hamada Abdelkader Fayed

Abstract:

Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.

Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy

Procedia PDF Downloads 185
9850 Using Diagnostic Assessment as a Learning and Teaching Approach to Identify Learning Gaps at a Polytechnic

Authors: Vijayan Narayananayar

Abstract:

Identifying learning gaps is crucial in ensuring learners have the necessary knowledge and skills to succeed. The Learning and Teaching (L&T) approach requires tutors to identify gaps in knowledge and improvise learning activities to close them. One approach to identifying learning gaps is through diagnostic assessment, which uses well-structured questions and answer options. The paper focuses on the use of diagnostic assessment as a learning and teaching approach in a foundational module at a polytechnic. The study used diagnostic assessment over two semesters, including the COVID and post-COVID semesters, to identify gaps in learning. The design of the diagnostic activity, pedagogical intervention, and survey responses completed by learners were analyzed. Results showed that diagnostic assessment can be an effective tool for identifying learning gaps and designing interventions to address them. Additionally, the use of diagnostic assessment provides an opportunity for tutors to engage with learners on a one-to-one basis, tailoring teaching to individual needs. The paper also discusses the design of diagnostic questions and answer options, including characteristics that need to be considered in achieving the target of identifying learning gaps. The implications of using diagnostic assessment as a learning and teaching approach include bridging the gap between theory and practice, and ensuring learners are equipped with skills necessary for their future careers. This paper can be useful in helping educators and practitioners to incorporate diagnostic assessment into their L&T approach.

Keywords: assessment, learning & teaching, diagnostic assessment, analytics

Procedia PDF Downloads 61
9849 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-worls, resilience to damage

Procedia PDF Downloads 513
9848 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings

Authors: Omar M. Elmabrouk

Abstract:

The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.

Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating

Procedia PDF Downloads 523
9847 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 507
9846 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa

Abstract:

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Keywords: flank wear, cutting forces, high speed milling, signal processing, neural network

Procedia PDF Downloads 363
9845 Mining Diagnostic Investigation Process

Authors: Sohail Imran, Tariq Mahmood

Abstract:

In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.

Keywords: process mining, healthcare, diagnostic investigation process, process flow

Procedia PDF Downloads 489
9844 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction

Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto

Abstract:

Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.

Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data

Procedia PDF Downloads 73
9843 Iron Deficiency and Iron Deficiency Anaemia/Anaemia as a Diagnostic Indicator for Coeliac Disease: A Systematic Review With Meta-Analysis

Authors: Sahar Shams

Abstract:

Coeliac disease (CD) is a widely reported disease particularly in countries with predominant Caucasian populations. It presents with many signs and symptoms including iron deficiency (ID) and iron deficiency anaemia/anaemia (IDA/A). The exact association between ID, IDA/A and CD and how accurate these signs are in diagnosing CD is not fully known. This systematic review was conducted to investigate the accuracy of both ID & IDA/A as a diagnostic indicator for CD and whether it warrants point of care testing. A systematic review was performed looking at studies published in MEDLINE, Embase, Cochrane Library, and Web of Science. QUADAS-2 tool was used to assess risk of bias in each study. ROC curve and forest plots were generated as part of the meta-analysis after data extraction. 16 studies were identified in total, 13 of which were IDA/A studies and 3 ID studies. The prevalence of CD regardless of diagnostic indicator was assumed as 1%. The QUADAS-2 tool indicated most of studies as having high risk of bias. The PPV for CD was higher in those with ID than for those with IDA/A. Meta-analysis showed the overall odds of having CD is 5 times higher in individuals with ID & IDA/A. The ROC curve showed that there is definitely an association between both diagnostic indicators and CD, the association is not a particularly strong one due to great heterogeneity between studies. Whilst an association between IDA/A & ID and coeliac disease was evident, the results were not deemed significant enough to prompt coeliac disease testing in those with IDA/A & ID.

Keywords: anemia, iron deficiency anemia, coeliac disease, point of care testing

Procedia PDF Downloads 101
9842 Comparison of the Response of TLD-100 and TLD-100H Dosimeters in Diagnostic Radiology

Authors: S. Sina, B. Zeinali, M. Karimipourfard, F. Lotfalizadeh, M. Sadeghi, E. Zamani, M. Zehtabian, R. Faghihi

Abstract:

Proper dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg, Cu, P (TLD100H) in obtaining the entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. The results show a close agreement between the dose measured by the two dosimeters. According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e. signal(nc)/dose) than TLD-100. Therefore, it is suggested that the TLD-100H are effective dosimeters for dosimetry in low dose fields.

Keywords: entrance skin dose, TLD, diagnostic radiology, dosimeter

Procedia PDF Downloads 439
9841 Diagnostic Performance of Mean Platelet Volume in the Diagnosis of Acute Myocardial Infarction: A Meta-Analysis

Authors: Kathrina Aseanne Acapulco-Gomez, Shayne Julieane Morales, Tzar Francis Verame

Abstract:

Mean platelet volume (MPV) is the most accurate measure of the size of platelets and is routinely measured by most automated hematological analyzers. Several studies have shown associations between MPV and cardiovascular risks and outcomes. Although its measurement may provide useful data, MPV remains to be a diagnostic tool that is yet to be included in routine clinical decision making. The aim of this systematic review and meta-analysis is to determine summary estimates of the diagnostic accuracy of mean platelet volume for the diagnosis of myocardial infarction among adult patients with angina and/or its equivalents in terms of sensitivity, specificity, diagnostic odds ratio, and likelihood ratios, and to determine the difference of the mean MPV values between those with MI and those in the non-MI controls. The primary search was done through search in electronic databases PubMed, Cochrane Review CENTRAL, HERDIN (Health Research and Development Information Network), Google Scholar, Philippine Journal of Pathology, and Philippine College of Physicians Philippine Journal of Internal Medicine. The reference list of original reports was also searched. Cross-sectional, cohort, and case-control articles studying the diagnostic performance of mean platelet volume in the diagnosis of acute myocardial infarction in adult patients were included in the study. Studies were included if: (1) CBC was taken upon presentation to the ER or upon admission (within 24 hours of symptom onset); (2) myocardial infarction was diagnosed with serum markers, ECG, or according to accepted guidelines by the Cardiology societies (American Heart Association (AHA), American College of Cardiology (ACC), European Society of Cardiology (ESC); and, (3) if outcomes were measured as significant difference AND/OR sensitivity and specificity. The authors independently screened for inclusion of all the identified potential studies as a result of the search. Eligible studies were appraised using well-defined criteria. Any disagreement between the reviewers was resolved through discussion and consensus. The overall mean MPV value of those with MI (9.702 fl; 95% CI 9.07 – 10.33) was higher than in those of the non-MI control group (8.85 fl; 95% CI 8.23 – 9.46). Interpretation of the calculated t-value of 2.0827 showed that there was a significant difference in the mean MPV values of those with MI and those of the non-MI controls. The summary sensitivity (Se) and specificity (Sp) for MPV were 0.66 (95% CI; 0.59 - 0.73) and 0.60 (95% CI; 0.43 – 0.75), respectively. The pooled diagnostic odds ratio (DOR) was 2.92 (95% CI; 1.90 – 4.50). The positive likelihood ratio of MPV in the diagnosis of myocardial infarction was 1.65 (95% CI; 1.20 – 22.27), and the negative likelihood ratio was 0.56 (95% CI; 0.50 – 0.64). The intended role for MPV in the diagnostic pathway of myocardial infarction would perhaps be best as a triage tool. With a DOR of 2.92, MPV values can discriminate between those who have MI and those without. For a patient with angina presenting with elevated MPV values, it is 1.65 times more likely that he has MI. Thus, it is implied that the decision to treat a patient with angina or its equivalents as a case of MI could be supported by an elevated MPV value.

Keywords: mean platelet volume, MPV, myocardial infarction, angina, chest pain

Procedia PDF Downloads 49
9840 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans

Authors: Tomas Premoli, Sareh Rowlands

Abstract:

In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.

Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI

Procedia PDF Downloads 42
9839 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 106
9838 Examining the Overuse of Cystoscopy in the Evaluation of Lower Urinary Tract Symptoms in Men with Benign Prostatic Hyperplasia: A Prospective Study

Authors: Ilija Kelepurovski, Stefan Lazorovski, Pece Petkovski, Marian Anakievski, Svetlana Petkovska

Abstract:

Introduction: Benign prostatic hyperplasia (BPH) is a common condition that affects men over the age of 50 and is characterized by an enlarged prostate gland that can cause lower urinary tract symptoms (LUTS). Uroflowmetry and cystoscopy are two commonly used diagnostic tests to evaluate LUTS and diagnose BPH. While both tests can be useful, there is a risk of overusing cystoscopy and underusing uroflowmetry in the evaluation of LUTS. The aim of this study was to compare the use of uroflowmetry and cystoscopy in a prospective cohort of 100 patients with suspected BPH or other urinary tract conditions and to assess the diagnostic yield of each test. Materials and Methods: This was a prospective study of 100 male patients over the age of 50 with suspected BPH or other urinary tract conditions who underwent uroflowmetry and cystoscopy for the evaluation of LUTS at a single tertiary care center. Inclusion criteria included male patients over the age of 50 with suspected BPH or other urinary tract conditions, while exclusion criteria included previous urethral or bladder surgery, active urinary tract infection, and significant comorbidities. The primary outcome of the study was the frequency of cystoscopy in the evaluation of LUTS, and the secondary outcome was the diagnostic yield of each test. Results: Of the 100 patients included in the study, 86 (86%) were diagnosed with BPH and 14 (14%) had other urinary tract conditions. The mean age of the study population was 67 years. Uroflowmetry was performed on all 100 patients, while cystoscopy was performed on 70 (70%) of the patients. The diagnostic yield of uroflowmetry was high, with a clear diagnosis made in 92 (92%) of the patients. The diagnostic yield of cystoscopy was also high, with a clear diagnosis made in 63 (90%) of the patients who underwent the procedure. There was no statistically significant difference in the diagnostic yield of uroflowmetry and cystoscopy (p = 0.20). Discussion: Our study found that uroflowmetry is an effective and well-tolerated diagnostic tool for evaluating LUTS and diagnosing BPH, with a high diagnostic yield and low risk of complications. Cystoscopy is also a useful diagnostic tool, but it is more invasive and carries a small risk of complications such as bleeding or urinary tract infection. Both tests had a high diagnostic yield, suggesting that either test can provide useful information in the evaluation of LUTS. However, the fact that 70% of the study population underwent cystoscopy raises concerns about the potential overuse of this test in the evaluation of LUTS. This is especially relevant given the focus on patient-centered care and the need to minimize unnecessary or invasive procedures. Our findings underscore the importance of considering the clinical context and using evidence-based guidelines. Conclusion: In this prospective study of 100 patients with suspected BPH or other urinary tract conditions, we found that uroflowmetry and cystoscopy were both valuable diagnostic tools for the evaluation of LUTS. However, the potential overuse of cystoscopy in this population warrants further investigation and highlights the need for careful consideration of the optimal use of diagnostic tests in the evaluation of LUTS and the diagnosis of BPH. Further research is needed to better understand the relative roles of uroflowmetry and cystoscopy in the diagnostic workup of patients with LUTS, and to develop evidence-based guidelines for their appropriate use.

Keywords: uroflowmetry, cystoscopy, LUTS, BPH

Procedia PDF Downloads 52
9837 An intelligent Troubleshooting System and Performance Evaluator for Computer Network

Authors: Iliya Musa Adamu

Abstract:

This paper seeks to develop an expert system that would troubleshoot computer network and evaluate the network system performance so as to reduce the workload on technicians and increase the efficiency and effectiveness of solutions proffered to computer network problems. The platform of the system was developed using ASP.NET, whereas the codes are implemented in Visual Basic and integrated with SQL Server 2005. The knowledge base was represented using production rule, whereas the searching method that was used in developing the network troubleshooting expert system is the forward-chaining-rule-based-system. This software tool offers the advantage of providing an immediate solution to most computer network problems encountered by computer users.

Keywords: expert system, forward chaining rule based system, network, troubleshooting

Procedia PDF Downloads 611
9836 BlueVision: A Visual Tool for Exploring a Blockchain Network

Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin

Abstract:

Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.

Keywords: blockchain, visualization, consensus, distributed network

Procedia PDF Downloads 38
9835 Development of an Interactive and Robust Image Analysis and Diagnostic Tool in R for Early Detection of Cervical Cancer

Authors: Kumar Dron Shrivastav, Ankan Mukherjee Das, Arti Taneja, Harpreet Singh, Priya Ranjan, Rajiv Janardhanan

Abstract:

Cervical cancer is one of the most common cancer among women worldwide which can be cured if detected early. Manual pathology which is typically utilized at present has many limitations. The current gold standard for cervical cancer diagnosis is exhaustive and time-consuming because it relies heavily on the subjective knowledge of the oncopathologists which leads to mis-diagnosis and missed diagnosis resulting false negative and false positive. To reduce time and complexities associated with early diagnosis, we require an interactive diagnostic tool for early detection particularly in developing countries where cervical cancer incidence and related mortality is high. Incorporation of digital pathology in place of manual pathology for cervical cancer screening and diagnosis can increase the precision and strongly reduce the chances of error in a time-specific manner. Thus, we propose a robust and interactive cervical cancer image analysis and diagnostic tool, which can categorically process both histopatholgical and cytopathological images to identify abnormal cells in the least amount of time and settings with minimum resources. Furthermore, incorporation of a set of specific parameters that are typically referred to for identification of abnormal cells with the help of open source software -’R’ is one of the major highlights of the tool. The software has the ability to automatically identify and quantify the morphological features, color intensity, sensitivity and other parameters digitally to differentiate abnormal from normal cells, which may improve and accelerate screening and early diagnosis, ultimately leading to timely treatment of cervical cancer.

Keywords: cervical cancer, early detection, digital Pathology, screening

Procedia PDF Downloads 143
9834 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 340
9833 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 118
9832 Intelligent Diagnostic System of the Onboard Measuring Devices

Authors: Kyaw Zin Htut

Abstract:

In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.

Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis

Procedia PDF Downloads 370
9831 A Topology-Enabled Patient Connectivity Network to Bridge the Molecular-To-Phenotype Gap in Cholestasis

Authors: Doroteya K. Staykova, Dirk J. Lefeber, Sabine A. Fuchs, Judith J. M. Jans

Abstract:

Cholestasis is characterized by the accumulation of toxic bile salts and lipids in the organism. The variety in causes (genetic, immunologic, environmental) and nature (benign, transient, chronic, progressive) combined with the need for early diagnosis and rapid clinical decisions emphasizes the need for good diagnostic strategies to improve patient outcomes. In a current diagnostic analysis of cholestasis, mass-spectrometry metabolomics is a widely adopted tool to enhance clinical decisions at point-of-care, thanks to a short turnaround in measurement times while performing comprehensive molecular profiling of patient material. However, this comes at the cost of difficult-to-identify yet actionable knowledge, often buried within large and heterogenous omics data. Here, we demonstrate how topological data analysis can overcome this challenge in large metabolomics datasets of patients with twenty categories of Metabolic Disorders and overlapping clinical manifestations. To elucidate the complexity of disease progression in three cholestasis patients, we applied topological data analysis to direct-infusion mass spectrometry data collected from 190 plasma samples, including 67 controls, at the University Medical Center in Utrecht, Netherlands. Using the Mapper algorithm and filter function defined as a two-component projection based on Principal Component Analysis, we constructed a topological graph of connected patients, termed a Patient Connectivity Network (PCN). With incorporated clinical and molecular information, PCN revealed the topological shape of causes and severity of cholestasis and transitions in patients’ conditions. In conclusion, topology based PCN provides a holistic view of cholestasis state dynamics that has the potential to support and expedite clinical decisions.

Keywords: mass spectrometry-based metabolomics, patient connectivity network, topological data analysis, unmet clinical needs in Cholestasis

Procedia PDF Downloads 10
9830 Evaluating Multiple Diagnostic Tests: An Application to Cervical Intraepithelial Neoplasia

Authors: Areti Angeliki Veroniki, Sofia Tsokani, Evangelos Paraskevaidis, Dimitris Mavridis

Abstract:

The plethora of diagnostic test accuracy (DTA) studies has led to the increased use of systematic reviews and meta-analysis of DTA studies. Clinicians and healthcare professionals often consult DTA meta-analyses to make informed decisions regarding the optimum test to choose and use for a given setting. For example, the human papilloma virus (HPV) DNA, mRNA, and cytology can be used for the cervical intraepithelial neoplasia grade 2+ (CIN2+) diagnosis. But which test is the most accurate? Studies directly comparing test accuracy are not always available, and comparisons between multiple tests create a network of DTA studies that can be synthesized through a network meta-analysis of diagnostic tests (DTA-NMA). The aim is to summarize the DTA-NMA methods for at least three index tests presented in the methodological literature. We illustrate the application of the methods using a real data set for the comparative accuracy of HPV DNA, HPV mRNA, and cytology tests for cervical cancer. A search was conducted in PubMed, Web of Science, and Scopus from inception until the end of July 2019 to identify full-text research articles that describe a DTA-NMA method for three or more index tests. Since the joint classification of the results from one index against the results of another index test amongst those with the target condition and amongst those without the target condition are rarely reported in DTA studies, only methods requiring the 2x2 tables of the results of each index test against the reference standard were included. Studies of any design published in English were eligible for inclusion. Relevant unpublished material was also included. Ten relevant studies were finally included to evaluate their methodology. DTA-NMA methods that have been presented in the literature together with their advantages and disadvantages are described. In addition, using 37 studies for cervical cancer obtained from a published Cochrane review as a case study, an application of the identified DTA-NMA methods to determine the most promising test (in terms of sensitivity and specificity) for use as the best screening test to detect CIN2+ is presented. As a conclusion, different approaches for the comparative DTA meta-analysis of multiple tests may conclude to different results and hence may influence decision-making. Acknowledgment: This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Extension of Network Meta-Analysis for the Comparison of Diagnostic Tests ” (MIS 5047640).

Keywords: colposcopy, diagnostic test, HPV, network meta-analysis

Procedia PDF Downloads 115
9829 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 175
9828 Usability Evaluation of Rice Doctor as a Diagnostic Tool for Agricultural Extension Workers in Selected Areas in the Philippines

Authors: Jerome Cayton Barradas, Rowely Parico, Lauro Atienza, Poornima Shankar

Abstract:

The effective agricultural extension is essential in facilitating improvements in various agricultural areas. One way of doing this is through Information and communication technologies (ICTs) like Rice Doctor (RD), an app-based diagnostic tool that provides accurate and timely diagnosis and management recommendations for more than 80 crop problems. This study aims to evaluate the RD usability by determining the effectiveness, efficiency, and user satisfaction of RD in making an accurate and timely diagnosis. It also aims to identify other factors that affect RD usability. This will be done by comparing RD with two other diagnostic methods: visual identification-based diagnosis and reference-guided diagnosis. The study was implemented in three rice-producing areas and has involved 96 extension workers. Respondents accomplished a self-administered survey and participated in group discussions. Data collected was then subjected to qualitative and quantitative analysis. Most of the respondents were satisfied with RD and believed that references are needed in assuring the accuracy of diagnosis. The majority found it efficient and easy to use. Some found it confusing and complicated, but this is because of their unfamiliarity with RD. Most users were also able to achieve accurate diagnosis proving effectiveness. Lastly, although users have reservations, they are satisfied and open to using RD. The study also found out the importance of visual identification skills in using RD and the need for capacity development and improvement of access to RD devices. From these results, the following are recommended to improve RD usability: review and upgrade diagnostic keys, expand further RD content, initiate capacity development for AEWs, and prepare and implement an RD communication plan.

Keywords: agricultural extension, crop protection, information and communication technologies, rice doctor

Procedia PDF Downloads 225
9827 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 510
9826 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 174
9825 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 22
9824 A Study of Traffic Assignment Algorithms

Authors: Abdelfetah Laouzai, Rachid Ouafi

Abstract:

In a traffic network, users usually choose their way so that it reduces their travel time between pairs origin-destination. This behavior might seem selfish as it produces congestions in different parts of the network. The traffic assignment problem (TAP) models the interactions between congestion and user travel decisions to obtain vehicles flows over each axis of the traffic network. The resolution methods of TAP serve as a tool allows predicting users’ distribution, identifying congesting points and affecting the travelers’ behavior in the choice of their route in the network following dynamic data. In this article, we will present a review about specific resolution approach of TAP. A comparative analysis is carried out on those approaches so that it highlights the characteristics, advantages and disadvantages of each.

Keywords: network traffic, travel decisions, approaches, traffic assignment, flows

Procedia PDF Downloads 431
9823 Complex Network Approach to International Trade of Fossil Fuel

Authors: Semanur Soyyigit Kaya, Ercan Eren

Abstract:

Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weakness and strength of the system. On the other side, it is commonly believed that international trade has complex network properties. Complex network is a tool for the analysis of complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex systems such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to data.

Keywords: complex network approach, fossil fuel, international trade, network theory

Procedia PDF Downloads 305