Search results for: adsorption mechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3841

Search results for: adsorption mechanism

811 Democratising Rivers: Local River Conflicts in Rajasthan

Authors: Renu Sisodia

Abstract:

This paper attempted to explore and explain the local level river water conflicts in the larger context of state - society relations. This study also covered causes of local level river water conflicts in the catchment area of Bandi and Arvari river of Rajasthan. The focus of the study was on the emergence of community driven, decentralised management of river water bodies and strategies used by local communities to protect and manage river water conflicts. The research is conducted through the process of designing a framework based on essential theoretical and practical findings supported by primary and secondary data. Two in depth case study is conducted to understand the phenomenon in depth. The first field site is Bandi River of Pali district, which is about the struggle between textile industries, community and the State government in which water pollution is said to be one of the driving force of the conflict. Finding shows that the state is supporting textile industries in Pali district have not been adherent to the environmental ethics. Present legal infrastructure and local institutions fail to resolve the serious problem of water pollution in Bandi River and its adverse impact on the local community as a result local community resistance against the local administration and the state government. The second case illustrates the plight of Arvari River in Alwar district. Tussle for the ownership of fisheries between local community, the private fish contractor and State government has been the main bone of contestation. To resolve this conflict local community formed conflict management mechanism named as Arvari Parliament. Arvari Parliament has its own principle and rules to resolve water conflicts related to ownership of the river and use of the river water. The research findings also highlight the co-existence between conventional and modern practices in resolving conflicts.

Keywords: water, water pollution, water conflicts, water scarcity, conflict resolution, local community

Procedia PDF Downloads 457
810 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach

Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy

Abstract:

The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.

Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent

Procedia PDF Downloads 74
809 Design and Analysis of Hybrid Morphing Smart Wing for Unmanned Aerial Vehicles

Authors: Chetan Gupta, Ramesh Gupta

Abstract:

Unmanned aerial vehicles, of all sizes, are prime targets of the wing morphing concept as their lightweight structures demand high aerodynamic stability while traversing unsteady atmospheric conditions. In this research study, a hybrid morphing technology is developed to aid the trailing edge of the aircraft wing to alter its camber as a monolithic element rather than functioning as conventional appendages like flaps. Kinematic tailoring, actuation techniques involving shape memory alloys (SMA), piezoelectrics – individually fall short of providing a simplistic solution to the conundrum of morphing aircraft wings. On the other hand, the feature of negligible hysteresis while actuating using compliant mechanisms has shown higher levels of applicability and deliverability in morphing wings of even large aircrafts. This research paper delves into designing a wing section model with a periodic, multi-stable compliant structure requiring lower orders of topological optimization. The design is sub-divided into three smaller domains with external hyperelastic connections to achieve deflections ranging from -15° to +15° at the trailing edge of the wing. To facilitate this functioning, a hybrid actuation system by combining the larger bandwidth feature of piezoelectric macro-fibre composites and relatively higher work densities of shape memory alloy wires are used. Finite element analysis is applied to optimize piezoelectric actuation of the internal compliant structure. A coupled fluid-surface interaction analysis is conducted on the wing section during morphing to study the development of the velocity boundary layer at low Reynold’s numbers of airflow.

Keywords: compliant mechanism, hybrid morphing, piezoelectrics, shape memory alloys

Procedia PDF Downloads 283
808 Genome-Wide Assessment of Putative Superoxide Dismutases in Unicellular and Filamentous Cyanobacteria

Authors: Shivam Yadav, Neelam Atri

Abstract:

Cyanobacteria are photoautotrophic prokaryotes able to grow in diverse ecological habitats, originated 2.5 - 3.5 billion years ago and brought oxygenic photosynthesis. Since then superoxide dismutases (SODs) acquired great significance due to their ability to catalyze detoxification of byproducts of oxygenic photosynthesis, i.e. superoxide radicals. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of the superoxide dismutases family. In the present study, we extracted information regarding SODs from species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. 144 putative SOD homologues were identified. SODs are present in all cyanobacterial species reflecting their significant role in survival. However, their distribution varies, fewer in unicellular marine strains whereas abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic SODs were conserved well in these proteins. These SODs were classified into three major families according to their domain structures. Interestingly, they lack additional domains as found in proteins of other family. Phylogenetic relationships correspond well with phylogenies based on 16S rRNA and clustering occurs on the basis of structural characteristics such as domain organization. Similar conserved motifs and amino acids indicate that cyanobacterial SODs make use of a similar catalytic mechanism as eukaryotic SODs. Gene gain-and-loss is insignificant during SOD evolution as evidenced by absence of additional domain. This study has not only examined an overall background of sequence-structure-function interactions for the SOD gene family but also revealed variation among SOD distribution based on ecophysiological and morphological characters.

Keywords: comparative genomics, cyanobacteria, phylogeny, superoxide dismutases

Procedia PDF Downloads 109
807 The New Far-Right: The Social Construction of Hatred against the Contemporary Islamic Community in Multicultural Australia

Authors: Angel Adams

Abstract:

In Australia, the contemporary social construction of hatred against the Islamic community was facilitated through the mainstream media. Australian public figures who have depicted Muslims and Islam not only as potential terrorists but also as incompatible with the country’s values and identities have helped to increase the level of fear against the Islamic community, leading sympathetic far-right movements to shift discussions towards anti-Islamic and anti-Muslim rhetoric. Political opportunities combined with a socially constructed narrative of fear of the ‘other’, introduced during the White Australia Policy of 1901, has allowed extreme and radical far-right movements to justify hate against the contemporary Australian Islamic community. This study aims to answer the following question: How does Australia’s founding provide a fertile environment to the spread of hatred against the contemporary Islamic community? The paper demonstrates that a forged social construct of grievances concerning the Islamic community in Australia has led to a surge in supply of far-right activism to combat what has become a perceived ‘national threat’. In essence, Australia’s history of a fear of the ‘other’ brings challenges to a multicultural society, and can potentially lead to a more unstable socio-political environment where abuse and violence are normalized and more likely to develop. Furthermore, the paper aims to bring a more nuanced understanding of what is considered ‘new far-right’ discourses with shared anti-Islam and anti-Muslim agendas in Australia. The political opportunity structures theory was the mechanism used to determine how new forms of far-right groups have become more mainstream in Australia. Previous studies on far-right groups in Australia have relied on qualitative data, but further empirical research in this area is sorely needed. Above all, this paper clarifies how hatred against minorities can have a negative impact on wider communities and allow a global narrative of ‘us’ versus ‘them’ to erupt from the fringes of society in Australia.

Keywords: Australia, Islamophobia, far-right, nationalism, political opportunity structures, political violence, social construction

Procedia PDF Downloads 103
806 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 108
805 A Critical Review on Temperature Affecting the Morpho-Physiological, Hormonal and Genetic Control of Branching in Chrysanthemum

Authors: S. Ahmad, C. Yuan, Q. Zhang

Abstract:

The assorted architectural plasticity of a plant is majorly specified by stooling, a phenomenon tackled by a combination of developmental, environmental and hormonal accelerators of lateral buds. Chrysanthemums (Chrysanthemum morifolium) are one of the most economically important ornamental plants worldwide on the account of having plentiful architectural patterns, diverse shapes and attractive colors. Side branching is the major determinant guaranteeing the consistent demand of cut chrysanthemum in flower industry. Presence of immense number of axillary branches devalues the economic importance of this imperative plant and is a major challenge for mum growers to hold a stake in the cut flower market. Restricting branches to a minimum level, or no branches at all, is the dire need of the day in order to introducing novelty in cut chrysanthemums. Temperature is a potent factor which affects largely the escalation, development of chrysanthemum, and also the genetic expression of various vegetative traits like branching. It affects differently the developmental characteristics and phenotypic expressions of inherent qualities, thereby playing a significant role in differentiating the developmental responses in different cultivars of chrysanthemum. A detailed study pertaining to the affect of temperature on branching in chrysanthemum is a clear lacking throughout the literature on mums. Therefore, searching with temperature as an effective means of reducing side branching to a desired level could be an influencing extension of struggles about how to nullify stooling. This requires plenty of research in order to reveal the extended penetration of temperature in manipulating the genetic control of various important traits like branching, which is a burning issue now a days in producing cut flowers in chrysanthemum. The present review will highlight the impact of temperature on branching control mechanism in chrysanthemum at morpho-physiological, hormonal and molecular levels.

Keywords: branching, chrysanthemum, genetic control, hormonal, morpho-physiological, temperature

Procedia PDF Downloads 257
804 Near Ambient Pressure Photoelectron Spectroscopy Studies of CO Oxidation on Spinel Co3O4 Surfaces: Electronic Structure and Mechanistic Aspects of Wet and Dry CO Oxidation

Authors: Ruchi Jain, Chinnakonda S. Gopinath

Abstract:

The CO oxidation is a primary reaction in heterogeneous catalysis due to its potential to overcome the air pollution caused by various reasons. Indeed, in the study of sustainable catalysis, the role played by water is very important. The present work is focused on studying the effect of moisture on the sustainability of Co3O4 NR catalyst for CO oxidation reaction at ambient temperature. The catalytic activity, electronic structure and the mechanistic aspects of spinel Co3O4 nanorod surfaces have been explored in dry and wet atmosphere by near-ambient pressure photoelectron spectroscopic techniques (NAP-PES) with conventional x-ray (Al kα) and ultraviolet sources (He-I).Comparative NAPPES studies have been employed to understand the elucidation of the catalytic reaction pathway and the evolution of various surface species. The presence of water with CO+O2 plummet the catalytic activity due to the change in electronic nature from predominantly oxidic (without water in the feed) to few intermediates covered Co3O4 surface. However, ≥ 375 K Co3O4 surface recovers and regain oxidation activity, at least partially, even in the presence of water. Above mentioned observations are fully supported by the changes observed in the work function of Co3O4 in the presence of wet (H2O+CO+O2) compared to dry (CO+O2) conditions. Various type of surface species, such as CO(ads), carbonate, formate, are found to be on the catalyst surface depending on the reaction conditions. Under dry condition, CO couples with labile O atoms to form CO2, however under wet conditions it also interacts with surface OH groups results in the formation carbonate and formate intermediate. The carbonate acts at reaction inhibitor at room temperature, however proves as active intermediate at temperature 375 K or above. On the other hand, formate has proved to be reaction spectator due to its high stability. The intrinsic role of these species to suppress the oxidation has been demonstrated through a possible reaction mechanism under different reaction conditions.

Keywords: heterogeneous catalysis, surface chemistry, photoelectron spectroscopy, ambient oxidation

Procedia PDF Downloads 229
803 Indigenous Understandings of Climate Vulnerability in Chile: A Qualitative Approach

Authors: Rosario Carmona

Abstract:

This article aims to discuss the importance of indigenous people participation in climate change mitigation and adaptation. Specifically, it analyses different understandings of climate vulnerability among diverse actors involved in climate change policies in Chile: indigenous people, state officials, and academics. These data were collected through participant observation and interviews conducted during October 2017 and January 2019 in Chile. Following Karen O’Brien, there are two types of vulnerability, outcome vulnerability and contextual vulnerability. How vulnerability to climate change is understood determines the approach, which actors are involved and which knowledge is considered to address it. Because climate change is a very complex phenomenon, it is necessary to transform the institutions and their responses. To do so, it is fundamental to consider these two perspectives and different types of knowledge, particularly those of the most vulnerable, such as indigenous people. For centuries and thanks to a long coexistence with the environment, indigenous societies have elaborated coping strategies, and some of them are already adapting to climate change. Indigenous people from Chile are not an exception. But, indigenous people tend to be excluded from decision-making processes. And indigenous knowledge is frequently seen as subjective and arbitrary in relation to science. Nevertheless, last years indigenous knowledge has gained particular relevance in the academic world, and indigenous actors are getting prominence in international negotiations. There are some mechanisms that promote their participation (e.g., Cancun safeguards, World Bank operational policies, REDD+), which are not absent from difficulties. And since 2016 parties are working on a Local Communities and Indigenous Peoples Platform. This paper also explores the incidence of this process in Chile. Although there is progress in the participation of indigenous people, this participation responds to the operational policies of the funding agencies and not to a real commitment of the state with this sector. The State of Chile omits a review of the structure that promotes inequality and the exclusion of indigenous people. In this way, climate change policies could be configured as a new mechanism of coloniality that validates a single type of knowledge and leads to new territorial control strategies, which increases vulnerability.

Keywords: indigenous knowledge, climate change, vulnerability, Chile

Procedia PDF Downloads 103
802 The Role Previous Cytomegalovirus Infection in Subsequent Lymphoma Develompment

Authors: Amalia Ardeljan, Lexi Frankel, Divesh Manjani, Gabriela Santizo, Maximillian Guerra, Omar Rashid

Abstract:

Introduction: Cytomegalovirus (CMV) infection is a widespread infection affecting between 60-70% of people in industrialized countries. CMV has been previously correlated with a higher incidence of Hodgkin Lymphoma compared to noninfected persons. Research regarding prior CMV infection and subsequent lymphoma development is still controversial. With limited evidence, further research is needed in order to understand the relationship between previous CMV infection and subsequent lymphoma development. This study assessed the effect of CMV infection and the incidence of lymphoma afterward. Methods: A retrospective cohort study (2010-2019) was conducted through a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using International Classification of Disease (ICD) 9th,10th codes, and Current Procedural Terminology (CPT) codes. These were used to identify lymphoma diagnosis in a previously CMV infected population. Patients were matched for age range and Charlson Comorbidity Index (CCI). A chi-squared test was used to assess statistical significance. Results: A total number of 14,303 patients was obtained in the CMV infected group as well as in the control population (matched by age range and CCI score). Subsequent lymphoma development was seen at a rate of 11.44% (1,637) in the CMV group and 5.74% (822) in the control group, respectively. The difference was statistically significant by p= 2.2x10-16, odds ratio = 2.696 (95% CI 2.483- 2.927). In an attempt to stratify the population by antiviral medication exposure, the outcomes were limited by the decreased number of members exposed to antiviral medication in the control population. Conclusion: This study shows a statistically significant correlation between prior CMV infection and an increased incidence of lymphoma afterward. Further exploration is needed to identify the potential carcinogenic mechanism of CMV and whether the results are attributed to a confounding bias.

Keywords: cytomegalovirus, lymphoma, cancer, microbiology

Procedia PDF Downloads 203
801 Investigating the Flavin-Dependent Thymidylate Synthase (FDTS) Enzyme from Clostridioides Difficile (C. diff)

Authors: Sidra Shaw, Sarenna Shaw, Chae Joon Lee, Irimpan Mathews, Eric Koehn

Abstract:

One of the biggest public health concerns of our time is increasing antimicrobial resistance. As of 2019, the CDC has documented more than 2.8 million serious antibiotic resistant infections in the United States. Currently, antibiotic resistant infections are directly implicated in over 750,000 deaths per year globally. On our current trajectory, British economist Jim O’Neill predicts that by 2050, an additional 10 million people (about half the population of New York) will die annually due to drug resistant infections. As a result, new biochemical pathways must be targeted to generate next generation antibiotic drugs that will be effective against drug resistant bacteria. One enticing target is the biosynthesis of DNA within bacteria, as few drugs interrupt this essential life process. Thymidylate synthase enzymes are essential for life as they catalyze the synthesis of a DNA building block, 2′-deoxythymidine-5′-monophosphate (dTMP). In humans, the thymidylate synthase enzyme (TSase) has been shown to be distinct from the flavin-dependent thymidylate synthase (FDTS) produced by many pathogenic bacteria. TSase and FDTS have distinct structures and mechanisms of catalysis, which should allow selective inhibition of FDTS over human TSase. Currently, C. diff is one of the most antibiotic resistant bacteria, and no drugs that target thymine biosynthesis exist for C. diff. Here we present the initial biochemical characterization of FDTS from C. diff. Specifically, we examine enzyme kinetics and binding features of this enzyme to determine the nature of interaction with ligands/inhibitors and understand the molecular mechanism of catalysis. This research will provide more insight into the targetability of the C. diff FDTS enzyme for novel antibiotic drugs.

Keywords: flavin-dependent thymidylate synthase, FDTS, clostridioides difficile, C. diff, antibiotic resistance, DNA synthesis, enzyme kinetics, binding features

Procedia PDF Downloads 68
800 Structural and Functional Characterization of the Transcriptional Regulator Rv1176 of Mycobacterium tuberculosis H37Rv

Authors: Vikash Yadav, Ashish Arora

Abstract:

Microorganisms have self-defense mechanisms to protect themselves from toxic environments. Phenolic acid decarboxylase(pad) is responsible for the defense against toxicity caused by phenolic acids, converting them into less toxic vinyl derivatives. The transcription of the pad gene is regulated by a negative transcription factor, phenolic acid decarboxylase regulators (PadR), in a substrate-inducible manner. The PadR family members share the conserved DNA-binding features and interact with the operator DNA using a winged helix-turn-helix (wHTH) motif, which contains a three-helix motif and a β-stranded wing. The members of this family function as transcriptional regulators that are involved in various cellular survival processes, such as toxin production, detoxification, multidrug resistance, antibiotic biosynthesis, and carbon catabolism. Rv1176 of Mycobacterium tuberculosis H37Rv has been assigned to the PadR family protein that remains to be structurally and functionally uncharacterized. To reveal the structural mechanism by which Rv1176 could regulates effector-responsive transcription, several experiments were performed, including Electrophoretic Mobility Shift Assay (EMSA) for DNA protein interaction, differential scanning calorimetry (DSC) and Differential Scanning Fluorimetry (DSF) for temperature and ligand-dependent protein stability, Circular Dichroism (CD) spectroscopy for secondary structure analysis. Further, to evaluate the functional role of Rv1176, the intracellular survival of recombinant M. smegmatis was examined in murine macrophage cell line J774A.1 and different stressed conditions like oxidative, pH, and nutritive stress. All these studies demonstrated that Rv1176 could behave as a transcription regulator and its expression in recombinant M. smegmatis increases intracellular survival.

Keywords: EMSA, Mycobacterium tuberculosis, PadR family protein, transcriptional regulator

Procedia PDF Downloads 50
799 Verbal Working Memory in Sequential and Simultaneous Bilinguals: An Exploratory Study

Authors: Archana Rao R., Deepak P., Chayashree P. D., Darshan H. S.

Abstract:

Cognitive abilities in bilinguals have been widely studied over the last few decades. Bilingualism has been found to extensively facilitate the ability to store and manipulate information in Working Memory (WM). The mechanism of WM includes primary memory, attentional control, and secondary memory, each of which makes a contribution to WM. Many researches have been done in an attempt to measure WM capabilities through both verbal (phonological) and nonverbal tasks (visuospatial). Since there is a lot of speculations regarding the relationship between WM and bilingualism, further investigation is required to understand the nature of WM in bilinguals, i.e., with respect to sequential and simultaneous bilinguals. Hence the present study aimed to highlight the verbal working memory abilities in sequential and simultaneous bilinguals with respect to the processing and recall abilities of nouns and verbs. Two groups of bilinguals aged between 18-30 years were considered for the study. Group 1 consisted of 20 (10 males and 10 females) sequential bilinguals who had acquired L1 (Kannada) before the age of 3 and had exposure to L2 (English) for a period of 8-10 years. Group 2 consisted of 20 (10 males and 10 females) simultaneous bilinguals who have acquired both L1 and L2 before the age of 3. Working memory abilities were assessed using two tasks, and a set of stimuli which was presented in gradation of complexity and the stimuli was inclusive of frequent and infrequent nouns and verbs. The tasks involved the participants to judge the correctness of the sentence and simultaneously remember the last word of each sentence and the participants are instructed to recall the words at the end of each set. The results indicated no significant difference between sequential and simultaneous bilinguals in processing the nouns and verbs, and this could be attributed to the proficiency level of the participants in L1 and the alike cognitive abilities between the groups. And recall of nouns was better compared to verbs, maybe because of the complex argument structure involved in verbs. Similarly, authors found a frequency of occurrence of nouns and verbs also had an effect on WM abilities. The difference was also found across gradation due to the load imposed on the central executive function and phonological loop.

Keywords: bilinguals, nouns, verbs, working memory

Procedia PDF Downloads 98
798 Mainstreaming Environmentally-Friendly Household Management Practice through Indonesian Women Social Gathering

Authors: Erinetta P. Anjani, Karina Mariz, Rifqi K. Fathianto

Abstract:

While Islam teaches its’ followers to be mindful of God’s creation, including the environment, Indonesia as one of the world’s largest Muslim country, is now also world’s second-largest plastic waste contributor. The problem of waste is a complicated matter in Indonesia and is worsening because many landfills are now on verge of overcapacity. The causes of this problem are at least due to two things. First is Indonesia’s bad waste management. Second, people’s low of eco-literacy, as can be seen in massive use of non-degradable materials, low rate of waste separation, low rate of recycling and up cycling, whereas households are the largest source of waste in Indonesia. Mostly dealing with patriarchal culture, women in Indonesia play big and important role in their households, from family matter to household management (including waste management), to economic matter. Uniquely, the majority of Muslim women in Indonesia are engaged in -arisan- women social gathering or in -majelis ta’lim- women community in Islamic prayer, which serves as a social mechanism. As many NGOs are working on tackling environmental issues by raising awareness in order for the people to adapt a more environmentally-friendly household management practices, the problem of waste in Indonesia is meeting a bright light. Using qualitative data and descriptive analysis, the following is a proposal for a program intended to spread eco-literacy for waste management to women in Indonesia through their social gathering in order for them to gain awareness and start implementing eco-actions in their households. We attempt Waste4Change, a social company which provides environmentally-friendly waste management services, to reach women with modules that consist of environmental education, trainings, and workshops. We will then monitor and counsel the women to make sure if the lesson is going to be fully applied in their houses. The program will take place nearby University of Indonesia, Depok, West Java.

Keywords: eco-literacy, environmental education, household waste management, Muslim women social gathering, Waste4Change

Procedia PDF Downloads 124
797 Measurement and Monitoring of Graduate Attributes via iCGPA Implementation and ACADEMIA Programming: UNIMAS Case Study

Authors: Shanti Faridah Salleh, Azzahrah Anuar, Hamimah Ujir, Rohana Sapawi, Wan Hashim Wan Ibrahim, Noraziah Abdul Wahab, Majina Sulaiman, Raudhah Ahmadi, Al-Khalid Othman, Johari Abdullah

Abstract:

Integrated Cumulative Grade Point Average or iCGPA is an evaluation and reporting system that represents a comprehensive development of students’ achievement in their academic programs. Universiti Malaysia Sarawak, UNIMAS has started its implementation of iCGPA in 2016. iCGPA is driven by the Outcome-Based Education (OBE) system that has been long integrated into the higher education in Malaysia. iCGPA is not only a tool to enhance the OBE concept through constructive alignment but it is also an integrated mechanism to assist various stakeholders in making decisions or planning for program improvement. The outcome of this integrated system is the reporting of students’ academic performance in terms of cognitive (knowledge), psychomotor (skills), and affective (attitude) of which the students acquire throughout the duration of their study. The iCGPA reporting illustrates the attainment of student’s attribute in the eight domains of learning outcomes listed in the Malaysian Qualifications Framework (MQF). This paper discusses on the implementation of iCGPA in UNIMAS on the policy and strategy to direct the whole university to implement the iCGPA. The steps and challenges in integrating the exsting Outcome-Based Education and utilising iCGPA as a tool to quantify the students’ achievement are also highlighted in this paper. Finally, the ACADEMIA system, which is a dedicated centralised program ensure the implementation of iCGPA is a success has been developed. This paper discusses the structure and the analysis of ACADEMIA program and concludes the analysis made on the improvement made on the implementation of constructive alignment in all 40 programs involves in iCGPA implementation.

Keywords: constructive alignment, holistic graduates, mapping of assessment, programme outcome

Procedia PDF Downloads 184
796 Comparative Analysis of in vitro Release profile for Escitalopram and Escitalopram Loaded Nanoparticles

Authors: Rashi Rajput, Manisha Singh

Abstract:

Escitalopram oxalate (ETP), an FDA approved antidepressant drug from the category of SSRI (selective serotonin reuptake inhibitor) and is used in treatment of general anxiety disorder (GAD), major depressive disorder (MDD).When taken orally, it is metabolized to S-demethylcitalopram (S-DCT) and S-didemethylcitalopram (S-DDCT) in the liver with the help of enzymes CYP2C19, CYP3A4 and CYP2D6. Hence, causing side effects such as dizziness, fast or irregular heartbeat, headache, nausea etc. Therefore, targeted and sustained drug delivery will be a helpful tool for increasing its efficacy and reducing side effects. The present study is designed for formulating mucoadhesive nanoparticle formulation for the same Escitalopram loaded polymeric nanoparticles were prepared by ionic gelation method and characterization of the optimised formulation was done by zeta average particle size (93.63nm), zeta potential (-1.89mV), TEM (range of 60nm to 115nm) analysis also confirms nanometric size range of the drug loaded nanoparticles along with polydispersibility index of 0.117. In this research, we have studied the in vitro drug release profile for ETP nanoparticles, through a semi permeable dialysis membrane. The three important characteristics affecting the drug release behaviour were – particle size, ionic strength and morphology of the optimised nanoparticles. The data showed that on increasing the particle size of the drug loaded nanoparticles, the initial burst was reduced which was comparatively higher in drug. Whereas, the formulation with 1mg/ml chitosan in 1.5mg/ml tripolyphosphate solution showed steady release over the entire period of drug release. Then this data was further validated through mathematical modelling to establish the mechanism of drug release kinetics, which showed a typical linear diffusion profile in optimised ETP loaded nanoparticles.

Keywords: ionic gelation, mucoadhesive nanoparticle, semi-permeable dialysis membrane, zeta potential

Procedia PDF Downloads 269
795 Detection of Bcl2 Polymorphism in Patient with Hepatocellular carcinoma

Authors: Mohamed Abdel-Hamid, Olfat Gamil Shaker, Doha El-Sayed Ellakwa, Eman Fathy Abdel-Maksoud

Abstract:

Introduction: Despite advances in the knowledge of the molecular virology of hepatitis C virus (HCV), the mechanisms of hepatocellular injury in HCV infection are not completely understood. Hepatitis C viral infection (HCV) influences the susceptibility to apoptosis. This could lead to insufficient antiviral immune response and persistent viral infection. Aim of this study: was to examine whether BCL-2 gene polymorphism at codon 43 (+127G/A or Ala43Thr) has an impact on development of hepatocellular carcinoma caused by chronic hepatitis C Egyptian patients. Subjects and Methods: The study included three groups; group 1: composing of 30 patients with hepatocellular carcinoma (HCC), group 2 composing of 30 patients with HCV, group 3 composing of 30 healthy subjects matching the same age and socioeconomic status were taken as a control group. Gene polymorphism of BCL2 (Ala43Thr) were evaluated by PCR-RFLP technique and measured for all patients and controls. Results: The summed 43Thr genotype was more frequent and statistically significant in HCC patients as compared to control group. This genotype of BCL2 gene may inhibit the programmed cell death which leads to disturbance in tissue and cells homeostasis and reduction in immune regulation. This result leads to viral replication and HCV persistence. Moreover, virus produces variety of mechanisms to block genes participated in apoptosis. This mechanism proves that HCV patients who have 43Thr genotype are more susceptible to HCC. Conclusion: The data suggest for the first time that the BCL2 polymorphism is associated with the susceptibility to HCC in Egyptian populations and might be used as molecular markers for evaluating HCC risk. This study clearly demonstrated that Chronic HCV exhibit a deregulation of apoptosis with the disease progression. This provides an insight into the pathogenesis of chronic HCV infection, and may contribute to the therapy.

Keywords: BCL2 gene, Hepatitis C Virus, Hepatocellular carcinoma, sensitivity, specificity, apoptosis

Procedia PDF Downloads 485
794 The Universal Cultural Associations in the Conceptual Metaphors Used in the Headlines of Arab News and Saudi Gazette Newspapers: A Critical Cognitive Study

Authors: Hind Hassan Arruwaite

Abstract:

Conceptual metaphor is a cognitive semantic tool that provides access to people's conceptual systems. The correlation in the human conceptual system surpasses limited time and specific cultures. The universal associations provide universal schemas that organize people's conceptualization of the world. The study aims to explore how the cultural associations used in conceptual metaphors create commonalities and harmony between people of the world. In the research methodology, the researcher implemented Critical Metaphor Analysis, Metaphor Candidate Identification and Metaphor Identification Procedure models to deliver qualitative and descriptive findings. The semantic tension was the key criterion in identifying metaphorically used words in the headlines. The research materials are the oil trade conceptual metaphors used in the headlines of Arab News and Saudi Gazette Newspapers. The data will be uploaded to the self-constructed corpus to examine electronic lists for identifying conceptual metaphors. The study investigates the types of conceptual metaphors used in the headlines of the newspapers, the cultural associations identified in the conceptual metaphors, and whether the identified cultural associations in conceptual metaphors create universal conceptual schemas. The study aligned with previous seminal works on conceptual metaphor theory in emphasizing the distinctive power of conceptual metaphors in exposing the cultural associations that unify people's perceptions. The correlation of people conceptualization provides universal schemas that involve elements of human sensorimotor experiences. The study contributes to exposing the shared cultural associations that ensure the commonality of all humankind's thinking mechanism.

Keywords: critical discourse analysis, critical metaphor analysis, conceptual metaphor theory, primary and specific metaphors, corpus-driven approach, universal associations, image schema, sensorimotor experience, oil trade

Procedia PDF Downloads 177
793 Implication of Oxidative Stress and Intracellular Mediators in the Protective Effect of Artemisia campestris against Aspirin-Induced Gastric Lesions in Rat Model

Authors: Hichem Sebai, Mohamed Amine Jabri, Kais Rtibi, Haifa Tounsi, Lamjed Marzouki

Abstract:

Artemisia campestris has been widely used in Tunisian traditional medicine for its health beneficial effects. However, the present study aims at evaluating the antiulcer effects of Artemisia campestris aqueous extract (ACAE) as well as the mechanism of action involved in such gastroprotection. In this respect, male Wistar rats were divided into seven groups: control, aspirin (ASPR), ASPR + various doses of ACAE (100, 200 and 400 mg/kg, b.w.), ASPR+ famotidine and ASPR+ caffeic acid. Animals were pre-treated with ACAE extract during 10 days. We firstly showed that aspirin administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) level, a decrease of sulfhydryl -(SH) groups content and depletion of antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Pre-treatment with ACAE protected against aspirin-induced gastric oxidative stress. More importantly, aspirin administration increased plasma and tissue hydrogen peroxide (H₂O₂), free iron and calcium levels while the ACAE pre-treatment reversed all aspirin-induced intracellular mediators disturbance. The results of the present study clearly indicated that AEAC gastroprotection might be related, at least in part, to its antioxidant properties as well as to various gastric mucosal defense mechanisms, including the protection of gastric sulfhydryls and an opposite effect on some intracellular mediators such as free iron, hydrogen peroxide, and calcium. However, our data confirm the use of Artemisia campestris extracts in the Tunisian traditional folk medicine for the treatment of gastrointestinal diseases.

Keywords: gastric ulcer, Artemisia campestris, oxidative stress, sulfhydryl groups, Fenton reaction, rat

Procedia PDF Downloads 121
792 The Characteristics of Porcine Immune Synapse via Flow Cytometry and Transmission Electron Microscope

Authors: Ann Ying-An Chen, Yi-Lun Tsai, Hso-Chi Chaung

Abstract:

An understanding of pathogens and the immune system has played an utmost important role in agricultural research for the development of vaccinations. The immunological synapse, cell to cell interaction play a crucial role in triggering the body's immune system, such as activation between antigen-presenting cells (APCs) and different subsets of T-cell. If these interactions are regulated appropriately, the host has the ability to defend itself against a wide spectrum of infectious pathogens. The aim of this study is to establish and to characterize a porcine immune synapse system by co-culturing T cell/APC. In this study, blood samples were collected from specific-pathogen-free piglets, and peripheral blood mononuclear cells (PBMC) were separated by using Ficoll-Pague. The PBMC were then stained with CD4 (FITC) and CD25 (PE) antibodies. Different subsets of T cells sorted by fluorescence-activated cell sorting flow cytometer were co-cultured for 24 hrs with alveolar macrophages, and the profiles of cytokine secretion and mRNA transcription levels of Toll-like receptors were examined after. Results showed that the three stages of immune synapse were clearly visible and identified under both transmission and scanning electron microscope (TEM and SEM). The significant interaction differences in toll-like receptor expressions within the co-cultured cell system were observed. The TLR7 mRNA expressions in CD4+CD25- cells were lower than those in CD4+CD25+ and CD4 -CD25+. Interestingly, the IL-10 production levels in CD4+CD25- cells (7.732 pg/mL) were significantly higher than those of CD4+CD25+ (2.636 pg/mL) and CD4 -CD25+ (2.48 pg/mL). These findings demonstrated that a clear understanding of the porcine immune synapse system can contribute greatly for further investigations on the mechanism of T-cell activation, which can benefit in the discovery of potential adjuvant candidate or effective antigen epitopes in the development of vaccinations with high efficacy.

Keywords: antigen-presenting cells, immune synapse, pig, T subsets, toll-like receptor

Procedia PDF Downloads 94
791 Proliferative Effect of Some Calcium Channel Blockers on the Human Embryonic Kidney Cell Line

Authors: Lukman Ahmad Jamil, Heather M. Wallace

Abstract:

Introduction: Numerous epidemiological studies have shown a positive as well as negative association and no association in some cases between chronic use of calcium channel blockers and the increased risk of developing cancer. However, these associations were enmeshed with controversies in the absence of laboratory based studies to back up those claims. Aim: The aim of this study was to determine in mechanistic terms the association between the long-term administration of nifedipine and diltiazem and increased risk of developing cancer using the human embryonic kidney (HEK293) cell line. Methods: Cell counting using the Trypan blue dye exclusion and 3-4, 5-Dimethylthiazol-2-yl-2, 5-diphenyl-tetrazolium bromide (MTT) assays were used to investigate the effect of nifedipine and diltiazem on the growth pattern of HEK293 cells. Protein assay using modified Lowry method and analysis of intracellular polyamines concentration using Liquid Chromatography – Tandem Mass Spectrometry (LC-MS) were performed to ascertain the mechanism through which chronic use of nifedipine increases the risk of developing cancer. Results: Both nifedipine and diltiazem significantly increased the proliferation of HEK293 cells dose and time dependently. This proliferative effect after 24, 48 and 72-hour incubation period was observed at 0.78, 1.56 and 25 µM for nifedipine and 0.39, 1.56 and 25 µM for diltiazem, respectively. The increased proliferation of the cells was found to be statistically significantly (p<0.05). Furthermore, the increased proliferation of the cells induced by nifedipine was associated with the increase in the protein content and elevated intracellular polyamines concentration level. Conclusion: The chronic use of nifedipine is associated with increased proliferation of cells with concomitant elevation of polyamines concentration and elevated polyamine levels have been implicated in many malignant transformations and hence, these provide a possible explanation on the link between long term use of nifedipine and development of some human cancers. Further studies are needed to evaluate the cause of this association.

Keywords: cancer, nifedipine, polyamine, proliferation

Procedia PDF Downloads 165
790 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 242
789 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 342
788 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires

Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja

Abstract:

The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.

Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources

Procedia PDF Downloads 364
787 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines

Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina

Abstract:

Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard

Procedia PDF Downloads 164
786 Arsenic and Fluoride Contamination in Lahore, Pakistan: Spatial Distribution, Mineralization Control and Sources

Authors: Zainab Abbas Soharwardi, Chunli Su, Harold Wilson Tumwitike Mapoma, Syed Zahid Aziz, Mahmut Ince

Abstract:

This study investigated the spatial variations of groundwater chemistry used by communities in Lahore city with emphasis on arsenic (As) and fluoride (F) levels. A total of 472 tubewell samples were collected from 7 towns and analyzed for physical and chemical parameters, including pH, turbidity, electrical conductivity (EC), total dissolved solids (TDS), total hardness, HCO3, Ca2+, Mg2+, Na+, K+, SO42-, Cl-, NO3-, NO2-, F- and As. There were significant spatial variations observed for total hardness, TDS, HCO3, NO3 and As. In general, the south-east of the city displayed higher TH and HCO3 while the north-east showed significantly higher As concentrations attributed to the heterogeneity of the aquifer and industrial activities. In most cases, As was higher than WHO limit value. Indiscriminate disposal of domestic and commercial wastewater into River Ravi is the cause of elevated NO3 observed in the north-west compared to other places in the area. Investigation of the groundwater type revealed facies in the order: Ca-Mg-HCO3-SO4 > Mg-Ca-HCO3-SO4 > Ca-Mg-HCO3-SO4-Cl > Mg-Ca-HCO3-SO4 > Ca-HCO3-SO4 > Ca-Mg-SO4-HCO3. The plausible mineralization control mechanism seems to be that of carbonate weathering, although silicate weathering is probable. Moreover, PHREEQC model results showed that the groundwater was under saturated with respect to evaporites (anhydrite, fluorite, gypsum and halite) while generally equilibrium to saturated with respect to aragonite, calcite and dolomite. The Hierarchical Cluster Analysis (HCA) showed that pH significantly affected As, F, NO3 and NO2 while HCO3 contributing most to the observed TDS values in Lahore. It is concluded that inherent mineral dissolution/ precipitation, pH, oxic conditions, anthropogenic activities, atmospheric transport/ wet deposition, microbial activities and surface soil characteristics play their significant roles in elevating both As and F in the city's groundwater.

Keywords: Lahore, arsenic, fluoride, groundwater

Procedia PDF Downloads 527
785 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach

Authors: Jubee Varghese, Pouria Hafiz

Abstract:

Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.

Keywords: ABAQUS, beams, fiber-reinforced concrete, finite element, light weight, shear span-depth ratio, steel fibers, steel-fiber volume fraction

Procedia PDF Downloads 84
784 Optimization-Based Design Improvement of Synchronizer in Transmission System for Efficient Vehicle Performance

Authors: Sanyka Banerjee, Saikat Nandi, P. K. Dan

Abstract:

Synchronizers as an integral part of gearbox is a key element in the transmission system in automotive. The performance of synchronizer affects transmission efficiency and driving comfort. Synchronizing mechanism as a major component of transmission system must be capable of preventing vibration and noise in the gears. Gear shifting efficiency improvement with an aim to achieve smooth, quick and energy efficient power transmission remains a challenge for the automotive industry. Performance of the synchronizer is dependent on the features and characteristics of its sub-components and therefore analysis of the contribution of such characteristics is necessary. An important exercise involved is to identify all such characteristics or factors which are associated with the modeling and analysis and for this purpose the literature was reviewed, rather extensively, to study the mathematical models, formulated considering such. It has been observed that certain factors are rather common across models; however, there are few factors which have specifically been selected for individual models, as reported. In order to obtain a more realistic model, an attempt here has been made to identify and assimilate practically all possible factors which may be considered in formulating the model more comprehensively. A simulation study, formulated as a block model, for such analysis has been carried out in a reliable environment like MATLAB. Lower synchronization time is desirable and hence, it has been considered here as the output factors in the simulation modeling for evaluating transmission efficiency. An improved synchronizer model requires optimized values of sub-component design parameters. A parametric optimization utilizing Taguchi’s design of experiment based response data and their analysis has been carried out for this purpose. The effectiveness of the optimized parameters for the improved synchronizer performance has been validated by the simulation study of the synchronizer block model with improved parameter values as input parameters for better transmission efficiency and driver comfort.

Keywords: design of experiments, modeling, parametric optimization, simulation, synchronizer

Procedia PDF Downloads 279
783 Corruption, Institutional Quality and Economic Growth in Nigeria

Authors: Ogunlana Olarewaju Fatai, Kelani Fatai Adeshina

Abstract:

The interplay of corruption and institutional quality determines how effective and efficient an economy progresses. An efficient institutional quality is a key requirement for economic stability. Institutional quality in most cases has been used interchangeably with Governance and these have given room for proxies that legitimized Governance as measures for institutional quality. A poorly-tailored institutional quality has a penalizing effect on corruption and economic growth, while defective institutional quality breeds corruption. Corruption is a hydra-headed phenomenon as it manifests in different forms. The most celebrated definition of corruption is given as “the use or abuse of public office for private benefits or gains”. It also denotes an arrangement between two mutual parties in the determination and allocation of state resources for pecuniary benefits to circumvent state efficiency. This study employed Barro (1990) type augmented model to analyze the nexus among corruption, institutional quality and economic growth in Nigeria using annual time series data, which spanned the period 1996-2019. Within the analytical framework of Johansen Cointegration technique, Error Correction Mechanism (ECM) and Granger Causality tests, findings revealed a long-run relationship between economic growth, corruption and selected measures of institutional quality. The long run results suggested that all the measures of institutional quality except voice & accountability and regulatory quality are positively disposed to economic growth. Moreover, the short-run estimation indicated a reconciliation of the divergent views on corruption which pointed at “sand the wheel” and “grease the wheel” of growth. In addition, regulatory quality and the rule of law indicated a negative influence on economic growth in Nigeria. Government effectiveness and voice & accountability, however, indicated a positive influence on economic growth. The Granger causality test results suggested a one-way causality between GDP and Corruption and also between corruption and institutional quality. Policy implications from this study pointed at checking corruption and streamlining institutional quality framework for better and sustained economic development.

Keywords: institutional quality, corruption, economic growth, public policy

Procedia PDF Downloads 135
782 Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product

Authors: Srishti Bhatt, Vaibhav Bhavsar, Adil Hussain, Aashay Mhaske, S. C. Bali, T. S. Srikanth

Abstract:

Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated.

Keywords: actuators, automotive, nitinol, shape memory alloy, SMA wire orientations

Procedia PDF Downloads 61