Search results for: EMSA
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: EMSA

6 Structural and Functional Characterization of the Transcriptional Regulator Rv1176 of Mycobacterium tuberculosis H37Rv

Authors: Vikash Yadav, Ashish Arora

Abstract:

Microorganisms have self-defense mechanisms to protect themselves from toxic environments. Phenolic acid decarboxylase(pad) is responsible for the defense against toxicity caused by phenolic acids, converting them into less toxic vinyl derivatives. The transcription of the pad gene is regulated by a negative transcription factor, phenolic acid decarboxylase regulators (PadR), in a substrate-inducible manner. The PadR family members share the conserved DNA-binding features and interact with the operator DNA using a winged helix-turn-helix (wHTH) motif, which contains a three-helix motif and a β-stranded wing. The members of this family function as transcriptional regulators that are involved in various cellular survival processes, such as toxin production, detoxification, multidrug resistance, antibiotic biosynthesis, and carbon catabolism. Rv1176 of Mycobacterium tuberculosis H37Rv has been assigned to the PadR family protein that remains to be structurally and functionally uncharacterized. To reveal the structural mechanism by which Rv1176 could regulates effector-responsive transcription, several experiments were performed, including Electrophoretic Mobility Shift Assay (EMSA) for DNA protein interaction, differential scanning calorimetry (DSC) and Differential Scanning Fluorimetry (DSF) for temperature and ligand-dependent protein stability, Circular Dichroism (CD) spectroscopy for secondary structure analysis. Further, to evaluate the functional role of Rv1176, the intracellular survival of recombinant M. smegmatis was examined in murine macrophage cell line J774A.1 and different stressed conditions like oxidative, pH, and nutritive stress. All these studies demonstrated that Rv1176 could behave as a transcription regulator and its expression in recombinant M. smegmatis increases intracellular survival.

Keywords: EMSA, Mycobacterium tuberculosis, PadR family protein, transcriptional regulator

Procedia PDF Downloads 42
5 Children Asthma; The Role of Molecular Pathways and Novel Saliva Biomarkers Assay

Authors: Seyedahmad Hosseini, Mohammadjavad Sotoudeheian

Abstract:

Introduction: Allergic asthma is a heterogeneous immuno-inflammatory disease based on Th-2-mediated inflammation. Histopathologic abnormalities of the airways characteristic of asthma include epithelial damage and subepithelial collagen deposition. Objectives: Human bronchial epithelial cell genome expression of TNF‑α, IL‑6, ICAM‑1, VCAM‑1, nuclear factor (NF)‑κB signaling pathways up-regulate during inflammatory cascades. Moreover, immunofluorescence assays confirmed the nuclear translocation of NF‑κB p65 during inflammatory responses. An absolute LDH leakage assays suggestedLPS-inducedcells injury, and the associated mechanisms are co-incident events. LPS-induced phosphorylation of ERKand JNK causes inflammation in epithelial cells through inhibition of ERK and JNK activation and NF-κB signaling pathway. Furthermore, the inhibition of NF-κB mRNA expression and the nuclear translocation of NF-κB lead to anti-inflammatory events. Likewise, activation of SUMF2 which inhibits IL-13 and reduces Th2-cytokines, NF-κB, and IgE levels to ameliorate asthma. On the other hand, TNFα-induced mucus production reduced NF-κB activation through inhibition of the activation status of Rac1 and IκBα phosphorylation. In addition, bradykinin B2 receptor (B2R), which mediates airway remodeling, regulates through NF-κB. Bronchial B2R expression is constitutively elevated in allergic asthma. In addition, certain NF-κB -dependent chemokines function to recruit eosinophils in the airway. Besides, bromodomain containing 4 (BRD4) plays a significant role in mediating innate immune response in human small airway epithelial cells as well as transglutaminase 2 (TG2), which is detectable in saliva. So, the guanine nucleotide-binding regulatory protein α-subunit, Gα16, expresses a κB-driven luciferase reporter. This response was accompanied by phosphorylation of IκBα. Furthermore, expression of Gα16 in saliva markedly enhanced TNF-α-induced κB reporter activity. Methods: The applied method to form NF-κB activation is the electromobility shift assay (EMSA). Also, B2R-BRD4-TG2 complex detection by immunoassay method within saliva with EMSA of NF-κB activation may be a novel biomarker for asthma diagnosis and follow up. Conclusion: This concept introduces NF-κB signaling pathway as potential asthma biomarkers and promising targets for the development of new therapeutic strategies against asthma.

Keywords: NF-κB, asthma, saliva, T-helper

Procedia PDF Downloads 73
4 A Study of Interleukin-1β Genetic Polymorphisms in Gastric Carcinoma and Colorectal Carcinoma in Egyptian Patients

Authors: Mariam Khaled, Noha Farag, Ghada Mohamed Abdel Salam, Khaled Abu-Aisha, Mohamed El-Azizi

Abstract:

Gastric and colorectal cancers are among the most frequent causes of cancer-associated mortalities in Africa. They have been considered as a global public health concern, as nearly one million new cases are reported per year. IL-1β is a pro-inflammatory cytokine-produced by activated macrophages and monocytes- and a member of the IL-1 family. The inactive IL-1β precursor is cleaved and activated by caspase-1 enzyme, which itself is activated by the assembly of intracellular structures defined as NLRP3 (Nod Like receptor P3) inflammasomes. Activated IL-1β stimulates the Interleukin-1 receptor type-1 (IL-1R1), which is responsible for the initiation of a signal transduction pathway leading to cell proliferation. It has been proven that the IL-1β gene is a highly polymorphic gene in which single nucleotide polymorphisms (SNPs) may affect its expression. It has been previously reported that SNPs including base transitions between C and T at positions, -511 (C-T; dbSNP: rs16944) and -31 (C-T; dbSNP: rs1143627), from the transcriptional start site, contribute to the pathogenesis of gastric and colorectal cancers by affecting IL-1β levels. Altered production of IL-1β due to such polymorphisms is suspected to stimulate an amplified inflammatory response and promote Epithelial Mesenchymal Transition leading to malignancy. Allele frequency distribution of the IL-1β-31 and -511 SNPs, in different populations, and their correlation to the incidence of gastric and colorectal cancers, has been intriguing to researchers worldwide. The current study aims to investigate allele distributions of the IL-1β SNPs among gastric and colorectal cancers Egyptian patients. In order to achieve to that, 89 Biopsy and surgical specimens from the antrum and corpus mucosa of chronic gastritis subjects and gastric and colorectal carcinoma patients was collected for DNA extraction followed by restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR). The amplified PCR products of IL-1β-31C > T and IL-1β-511T > C were digested by incubation with the restriction endonuclease enzymes ALu1 and Ava1. Statistical analysis was carried out to determine the allele frequency distribution in the three studied groups. Also, the effect of the IL-1β -31 and -511 SNPs on nuclear factor binding was analyzed using Fluorescence Electrophoretic Mobility Shift Assay (EMSA), preceded by nuclear factor extraction from gastric and colorectal tissue samples and LPS stimulated monocytes. The results of this study showed that a significantly higher percentage of Egyptian gastric cancer patients have a homozygous CC genotype at the IL-1β-31 position and a heterozygous TC genotype at the IL-1β-511 position. Moreover, a significantly higher percentage of the colorectal cancer patients have a homozygous CC genotype at the IL-1β-31 and -511 positions as compared to the control group. In addition, the EMSA results showed that IL-1β-31C/T and IL-1β-511T/C SNPs do not affect nuclear factor binding. Results of this study suggest that the IL-1β-31 C/T and IL-1β-511 T/C may be correlated to the incidence of gastric cancer in Egyptian patients; however, similar findings couldn’t be proven in the colorectal cancer patients group for the IL-1β-511 T/C SNP. This is the first study to investigate IL-1β -31 and -511 SNPs in the Egyptian population.

Keywords: colorectal cancer, Egyptian patients, gastric cancer, interleukin-1β, single nucleotide polymorphisms

Procedia PDF Downloads 106
3 Canthin-6-One Alkaloid Inhibits NF-κB and AP-1 Activity: An Inhibitory Action At Transcriptional Level

Authors: Fadia Gafri, Kathryn Mckintosh, Louise Young, Alan Harvey, Simon Mackay, Andrew Paul, Robin Plevin

Abstract:

Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor found originally to play a key role in regulating inflammation. However considerable evidence links this pathway to the suppression of apoptosis, cellular transformation, proliferation and invasion (Aggarwal et al., 2006). Moreover, recent studies have also linked inflammation to cancer progression making NF-κB overall a promising therapeutic target for drug discovery (Dobrovolskaia & Kozlov, 2005). In this study we examined the effect of the natural product canthin-6-one (SU182) as part of a CRUK small molecule drug discovery programme for effects upon the NF-κB pathway. Initial studies demonstrated that SU182 was found to have good potency against the inhibitory kappa B kinases (IKKs) at 30M in vitro. However, at concentrations up to 30M, SU182 had no effect upon TNFα stimulated loss in cellular IκBα or p65 phosphorylation in the keratinocyte cell line NCTC2544. Nevertheless, 30M SU182 reduced TNF-α / PMA-induced NF-κB-linked luciferase reporter activity to (22.9 ± 5%) and (34.6± 3 %, P<0.001) respectively, suggesting an action downstream of IKK signalling. Indeed, SU182 neither decreased NF-κB-DNA binding as assayed by EMSA nor prevented the translocation of p65 (NF-κB) to the nucleus assessed by immunofluorescence and subcellular fractionation. In addition to the inhibition of transcriptional activity of TNFα-induced NF-κB reporter activity SU182 significantly reduced PMA-induced AP-1-linked luciferase reporter activity to about (48± 9% at 30M, P<0.001) . This mode of inhibition was not sufficient to prevent the activation of NF-κB dependent induction of other proteins such as COX-2 and iNOS, or activated MAP kinases (p38, JNK and ERK1/2) in LPS stimulated RAW 264.7 macrophages. Taken together these data indicate the potential for SU182 to interfere with the transcription factors NF-κB and AP-1 at transcriptional level. However, no potential anti-inflammatory effect was indicated, further investigation for other NF-κB dependent proteins linked to survival are also required to identify the exact mechanism of action.

Keywords: Canthin-6-one, NF-κB, AP-1, phosphorylation, Nuclear translocation, DNA-binding activity, inflammatory proteins.

Procedia PDF Downloads 430
2 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway

Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi

Abstract:

Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.

Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig

Procedia PDF Downloads 97
1 Biophysical and Structural Characterization of Transcription Factor Rv0047c of Mycobacterium Tuberculosis H37Rv

Authors: Md. Samsuddin Ansari, Ashish Arora

Abstract:

Every year 10 million people fall ill with one of the oldest diseases known as tuberculosis, caused by Mycobacterium tuberculosis. The success of M. tuberculosis as a pathogen is because of its ability to persist in host tissues. Multidrug resistance (MDR) mycobacteria cases increase every day, which is associated with efflux pumps controlled at the level of transcription. The transcription regulators of MDR transporters in bacteria belong to one of the following four regulatory protein families: AraC, MarR, MerR, and TetR. Phenolic acid decarboxylase repressor (PadR), like a family of transcription regulators, is closely related to the MarR family. Phenolic acid decarboxylase repressor (PadR) was first identified as a transcription factor involved in the regulation of phenolic acid stress response in various microorganisms (including Mycobacterium tuberculosis H37Rv). Recently research has shown that the PadR family transcription factors are global, multifunction transcription regulators. Rv0047c is a PadR subfamily-1 protein. We are exploring the biophysical and structural characterization of Rv0047c. The Rv0047 gene was amplified by PCR using the primers containing EcoRI and HindIII restriction enzyme sites cloned in pET-NH6 vector and overexpressed in DH5α and BL21 (λDE3) cells of E. coli following purification with Ni2+-NTA column and size exclusion chromatography. We did DSC to know the thermal stability; the Tm (transition temperature) of protein is 55.29ºC, and ΔH (enthalpy change) of 6.92 kcal/mol. Circular dichroism to know the secondary structure and conformation and fluorescence spectroscopy for tertiary structure study of protein. To understand the effect of pH on the structure, function, and stability of Rv0047c we employed spectroscopy techniques such as circular dichroism, fluorescence, and absorbance measurements in a wide range of pH (from pH-2.0 to pH-12). At low and high pH, it shows drastic changes in the secondary and tertiary structure of the protein. EMSA studies showed the specific binding of Rv0047c with its own 30-bp promoter region. To determine the effect of complex formation on the secondary structure of Rv0047c, we examined the CD spectra of the complex of Rv0047c with promoter DNA of rv0047. The functional role of Rv0047c was characterized by over-expressing the Rv0047c gene under the control of hsp60 promoter in Mycobacterium tuberculosis H37Rv. We have predicted the three-dimensional structure of Rv0047c using the Swiss Model and Modeller, with validity checked by the Ramachandra plot. We did molecular docking of Rv0047c with dnaA, through PatchDock following refinement through FireDock. Through this, it is possible to easily identify the binding hot-stop of the receptor molecule with that of the ligand, the nature of the interface itself, and the conformational change undergone by the protein pattern. We are using X-crystallography to unravel the structure of Rv0047c. Overall the studies show that Rv0047c may have transcription regulation along with providing an insight into the activity of Rv0047c in the pH range of subcellular environment and helps to understand the protein-protein interaction, a novel target to kill dormant bacteria and potential strategy for tuberculosis control.

Keywords: mycobacterium tuberculosis, phenolic acid decarboxylase repressor, Rv0047c, Circular dichroism, fluorescence spectroscopy, docking, protein-protein interaction

Procedia PDF Downloads 67