Search results for: Gas chromatography/Mass spectrometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4045

Search results for: Gas chromatography/Mass spectrometry

3985 A Turn-on Fluorescent Sensor for Pb(II)

Authors: Ece Kök Yetimoğlu, Soner Çubuk, Neşe Taşci, M. Vezir Kahraman

Abstract:

Lead(II) is one of the most toxic environmental pollutants in the world, due to its high toxicity and non-biodegradability. Lead exposure causes severe risks to human health such as central brain damages, convulsions, kidney damages, and even death. To determine lead(II) in environmental or biological samples, scientists use atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICPMS), fluorescence spectrometry and electrochemical techniques. Among these systems the fluorescence spectrometry and fluorescent chemical sensors have attracted considerable attention because of their good selectivity and high sensitivity. The fluorescent polymers usually contain covalently bonded fluorophores. In this study imidazole based UV cured polymeric film was prepared and designed to act as a fluorescence chemo sensor for lead (II) analysis. The optimum conditions such as influence of pH value and time on the fluorescence intensity of the sensor have also been investigated. The sensor was highly sensitive with a detection limit as low as 1.87 × 10−8 mol L-1 and it was successful in the determination of Pb(II) in water samples.

Keywords: fluorescence, lead(II), photopolymerization, polymeric sensor

Procedia PDF Downloads 640
3984 Chemical Composition of Essential Oil from Lavandula stoechas and Lavandula multifida Growing Wild in Algeria

Authors: Fatima Benchikh-Amiraa, Hocine Laouerb, Smain Amiraa, Guido Flaminic

Abstract:

The essential oils of the aerial parts of Lavandula multifida and L. stoechas were extracted at the full bloom stage by hydrodistillation and theirs chemical compositions were estimated by means of gas chromatography–mass spectrometry (GC–MS). A total of 46 and 67 constituents were identified representing 95.5% and 98.2% of the total oils, respectively. The main components of L. multifida oil were carvacrol (63.8%), beta-bisabolene (8.7%), spathulenol (6.2%), caryophyllene oxide (3.6%) and linalool (2.9%). The oil of L. stoechas was dominated by fenchone (63.9%), camphor (7.8%), 1,8-cineole (5.3%) and myrtenyl acetate (4.2).

Keywords: essential oils, Lavandula multifida, Lavandula stoechas, chemical and molecular engineering

Procedia PDF Downloads 380
3983 Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry

Authors: Adnan A. Kadi, Nasser S. Al-Shakliah, Haitham Al-Rabiah

Abstract:

Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate.

Keywords: in vivo metabolites, in vitro metabolites, cyano adducts, GSH conjugate

Procedia PDF Downloads 167
3982 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: biomarker discovery, cancer, feature selection, mass spectrometry

Procedia PDF Downloads 299
3981 Chemical Composition and Antioxidant Properties of Daucus Gracilis Extracts

Authors: El Kolli Meriem, Laouer Hocine, Sahli Farida, Akkal Salah, El Kolli Hayet

Abstract:

The aerial parts of Daucus gracilis (Apiaceae) were subjected to hydrodistillation by a Clevenger apparatus to obtain the essential oil (EO) which has been analyzed by Gas Chromatography (GC) and GC coupled with mass spectrometry. The antioxidant properties of this EO and D. gracilis methanolic extract were studied by both of the free diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and the reducing power techniques. The dominant constituents of the EO were the elemicin (35.3 %) and the geranyl acetate (26.8 %). Both of EO and methanolic extract showed important antioxidant properties with respectively IC50 of 0,002 mg/ml and 0.06 mg/ml. They showed also a reducing power dose-dependent.

Keywords: daucus gracilis, apiaceae, essential oil, antioxidant activity

Procedia PDF Downloads 312
3980 Compositional Analysis and Antioxidant Activities of the Chocolate Fermented by Lactobacillus plantarum CK10

Authors: Hye Rim Kang, So Yae Koh, Ji-Yeon Ryu, Chang Kyu Lee, Ji Hee Lim, Hyeon A. Kim, Geun Hyung Im, Somi Kim Cho

Abstract:

In this study, antioxidant properties and compositional analysis of fermented chocolate were examined. Chocolate was fermented with Lactobacillus plantarum CK10. As fermentation time went by, pH was decreased (5.26±0.02 to 3.98±0.06) while titratable acidity was increased (5.36±0.19 to 13.31±0.34). The total polyphenol contents were maintained through the fermentation. The contents of total polyphenol were slightly increased at 8 hr (6.34±0.12 mg GAE (Gallic acid equivalent)/g), and it reached to comparable levels of the control at 24 hr (control, 5.47±0.36 mg GAE/g); 24 hr, 5.19±0.23 mg GAE/g). Similarly, the total flavonoid contents were not significantly changed during fermentation. The pronounced radical scavenging activities of chocolate, against DPPH-, ABTS-, and Alkyl radical, were observed. The levels of antioxidant activities were not dramatically altered in the course of fermentation. By gas chromatography-mass spectrometry analysis, the increase in lactic acid was measured and four major compounds, HMF, xanthosine, caffeine, and theobromine, were identified. The relative peak area of caffeine and theobromine was considerably changed during fermentation. However, no significant difference in the levels of caffeine and theobromine were observed by high-performance liquid chromatography analysis.

Keywords: antioxidant, chocolate, compositional analysis, fermentation, Lactobaillus plantarum

Procedia PDF Downloads 263
3979 Determination of Micronutrients in the Fruit of Cydonia oblonga Miller

Authors: Madrakhimova Sakhiba, Matmurotov Bakhtishod, Boltaboyava Zilola, Matchanov Alimjan

Abstract:

Analyzing the chemical composition of locally consumed food products is one of the urgent problems in the health sector today. Taking this into account, it analyzed the microelement content of Cydonia oblonga Miller (COM) fruit growing in the Republic of Uzbekistan using the ISP MS inductively coupled mass spectrometry method. fruits brought to a constant mass in the analysis were mineralized in a mixture of nitric acid-HNO₃ and hydrogen peroxide-H₂O₂ in a ratio of 3:2. The mineralized extract was diluted to 50 milliliters with double-distilled water and analyzed. The results of the analysis showed that the fruit is rich in micronutrients necessary for the human body, especially potassium-K and phosphorus-P among macroelements, Strontium-Sr and barium-Ba from microelements are more than other microelements. It was observed that the amount of trace elements contained in COM fruit does not exceed the permissible standards. Therefore, it can be recommended to eat this fruit every day to prevent various diseases that occur in the human body.

Keywords: cydonia oblonga miller, macroelement, microelement, inductively coupled mass spectrometry, hydrolysis, mineralization

Procedia PDF Downloads 27
3978 Chemical Variability in the Essential Oils from the Leaves and Buds of Syzygium Species

Authors: Rabia Waseem, Low Kah Hin, Najihah Mohamed Hashim

Abstract:

The variability in the chemical components of the Syzygium species essential oils has been evaluated. The leaves of Syzygium species have been collected from Perak, Malaysia. The essential oils extracted by using the conventional Hydro-distillation extraction procedure and analyzed by using Gas chromatography System attached with Mass Spectrometry (GCMS). Twenty-seven constituents were found in Syzygium species in which the major constituents include: α-Pinene (3.94%), α-Thujene (2.16%), α-Terpineol (2.95%), g-Elemene (2.89%) and D-Limonene (14.59%). The aim of this study was the comparison between the evaluated data and existing literature to fortify the major variability through statistical analysis.

Keywords: chemotaxonomy, cluster analysis, essential oil, medicinal plants, statistical analysis

Procedia PDF Downloads 280
3977 The Synthesis and Characterization of Highly Water-Soluble Silane Coupling Agents for Increasing Silica Filler Content in Styrene-Butadiene Rubber

Authors: Jun Choi, Bo Ram Lee, Ji Hye Choi, Jung Soo Kim, No-Hyung Park, Dong Hyun Kim

Abstract:

The synthetic rubber compound, which is widely used as the core material for automobile tire industry, is manufactured by mixing styrene-butadiene rubber (SBR) and organic/inorganic fillers. It is known that the most important factor for the physical properties of rubber compound is the interaction between the filler and the rubber, which affects the rotational, braking and abrasion resistance. Silica filler has hydrophilic groups such as a silanol group on their surface which has a low affinity with hydrophobic rubbers. In order to solve this problem, researches on an efficient silane coupling agent (SCA) has been continuously carried out. In this study, highly water-soluble SCAs which are expected to show higher hydrolysis efficiency were synthesized. The hydrophobization process of the silica with the prepared SCAs was economical and environment-friendly. The SCAs structures were analysed by gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, their hydrolysis efficiency and condensation side reaction in SBR wet master batch were examined by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC), respectively.

Keywords: rubber, silane coupling agent, synthesis, water-soluble

Procedia PDF Downloads 273
3976 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS

Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren

Abstract:

An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.

Keywords: lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS

Procedia PDF Downloads 181
3975 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 275
3974 Potential Biosorption of Rhodococcus erythropolis, an Isolated Strain from Sossego Copper Mine, Brazil

Authors: Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Ingrid Avanzi, Elen A. Perpetuo

Abstract:

In this work, bacterial strains were isolated from environmental samples from a copper mine and three of them presented potential for bioremediation of copper. All the strains were identified by mass spectrometry (MALDI-TOF-Biotyper) and grown in three diferent media supplemented with 100 ppm of copper chloride in flasks of 500mL and it was incubated at 28 °C and 180 rpm. Periodically, samples were taken and monitored for cellular growth and copper biosorption by spectrophotometer UV-Vis (600 nm) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), respectively. At the end of exponential phase of cellular growth, the biomass was utilized to construct a correlation curve between absorbance and dry mass of the cells. Among the three isolates with potential for biorremediation, 1 strain exhibit capacity the most for bioremediation of effluents contaminated by copper being identified as Rhodococcus erythropolis.

Keywords: bioprocess, bioremediation, biosorption, copper

Procedia PDF Downloads 354
3973 GC-MS Identification of Two Major Essential Oils and their Anti-Oxidative Effect Using DPPH Assay

Authors: Mohammed Falalu Hamza

Abstract:

A phytochemical investigation conducted on the leaves extract of Cryptocarya latifolia (Lauraceae) revealed the presence of two major essential oils; Nerolidol (1) and Copaene (2) with the aid of gas chromatography-mass spectrometry (GC-MS). The compounds exhibited good anti-oxidant capacity using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging assay. The result shows that the anti-oxidant capacity of the compounds is dependent on concentration similar to the standard (ascorbic acid). This study shows that the leaves extract of C. latifolia is a good source of important natural antioxidants.

Keywords: broad-leaved quince, phytochemical, anti-oxidant, essential oils

Procedia PDF Downloads 467
3972 Effects of Collection Time on Chemical Composition of Leaf Essential Oils of Hoslundia opposita

Authors: O. E. Ogunjinmi, N. O. Olawore, L. A. Usman, S. O. Ogunjinmi

Abstract:

An essential oil is any concentrated, hydrophobic liquid containing volatile aroma compounds produced by plants. It has been established that several factors affect the component of the plants such as the texture of the soil, relative humidity, wind, and collection time. This study is aimed at investigating the effect of collection time on the chemical composition of this essential oil. Pulverized leaves (500 g) of Hoslundia opposite harvested in the morning (7 am) and afternoon (2 pm) of the same day were separately hydrodistilled using Clevenger apparatus to obtain the essential oils from the leaves. The leaf oils collected in the morning (7 am) and afternoon (2 pm) harvests yielded 0.54 and 0.65 %w/w respectively. Analysis of the leaf oil obtained in the morning, using gas chromatography (GC) and gas chromatography combined mass spectrometry (GC-MS) revealed the presence of twenty-three (23) compounds which made up 81.8% of the total oil while nineteen (19) compounds (93.2%) were identified in the afternoon leaf essential oil. The most abundant components of the leaf oil collected in the morning (7 am) harvest were p-cymene (28.7%), sabinene (7.1%) and 1,8-cineole (6.6%) Meanwhile the major components of leaf oil in the afternoon (2 pm) harvest were p-cymene (26.4%), thymol (15.3%), 1,8-cineole (15.0%) and g-terpinene (10.4%). The composition pattern of leaf oil obtained in the morning and afternoon harvests of Hoslundia opposite revealed significant differences in qualitative and quantitative.

Keywords: essential oil, Hoslundia opposita, para cymene, 1, 8-cineole

Procedia PDF Downloads 364
3971 Plasma-Induced Modification of Biomolecules: A Tool for Analysis of Protein Structures

Authors: Yuting Wu, Faraz Choudhury, Daniel Benjamin, James Whalin, Joshua Blatz, Leon Shohet, Michael Sussman, Mark Richards

Abstract:

Plasma-Induced Modification of Biomolecules (PLIMB) has been developed as a technology, which, together with mass spectrometry, measures three-dimensional structural characteristics of proteins. This technique uses hydroxyl radicals generated by atmospheric-pressure plasma discharge to react with the solvent-accessible side chains of protein in an aqueous solution. In this work, we investigate the three-dimensional structure of hemoglobin and myoglobin using PLIMB. Additional modifications to these proteins, such as oxidation, fragmentations, and conformational changes caused by PLIMB are also explored. These results show that PLIMB, coupled with mass spectrometry, is an effective way to determine solvent access to hemoproteins. Furthermore, we show that many factors, including pH and the electrical parameters used to generate the plasma, have a significant influence on solvent accessibility.

Keywords: plasma, hemoglobin, myoglobin, solvent access

Procedia PDF Downloads 157
3970 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 245
3969 Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Authors: Huixia Shi, Can Hu, Jun Zhu, Hongling Guo, Haiyan Li, Hongyan Du

Abstract:

The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation.

Keywords: body fluids, identification, Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Procedia PDF Downloads 102
3968 Occurrence of Antibiotics of Veterinary Use in Water of the Lake Titicaca: Its Environmental Implication and Human Health

Authors: Franz Zirena Vilca, Nestor Cahui Galarza, Walter Alejandro Zamalloa Cuba, Edith Tello Palma, Teofilo Donaires Flores, Valdemar Luiz Tornisielo

Abstract:

The production of rainbow trout in the Lake Titicaca represents an important economic activity for Peru. The city of Puno is responsible for 83% of this production, so the use of antibiotics within the aquaculture system is not alien to this reality. Meanwhile, the waters of Lake Titicaca represent an important source for the supply of drinking water for 80% of the population of the Puno city. In this paper, twelve antibiotics for veterinary use were monitored in water samples during two seasons: dry (July 2015) and rainy (February 2016), water samples from trout production systems, near the water catching point in the lake and drinking water in the city house of Puno were considered. The samples were analyzed using liquid chromatography coupled to mass spectrometry and solid online phase extraction (On-line SPE-LC-MS/MS), all samples analyzed showed concentrations of Ciprofloxacin up to 65.2 ng L⁻¹ at the rainy season. On the other hand, 63% of water samples from the dry season and 36 % from the rainy season showed Chlortetracycline up to 8.7 and 6.1 ng L⁻¹, respectively. The presence of residues of veterinary antibiotics in drinking water means a serious health risk for 80% of the population of Puno since all these people are supplied from this source.

Keywords: chromatography, DNA damage, environmental risk, water pollution

Procedia PDF Downloads 193
3967 Approach to Honey Volatiles' Profiling by Gas Chromatography and Mass Spectrometry

Authors: Igor Jerkovic

Abstract:

Biodiversity of flora provides many different nectar sources for the bees. Unifloral honeys possess distinctive flavours, mainly derived from their nectar sources (characteristic volatile organic components (VOCs)). Specific or nonspecific VOCs (chemical markers) could be used for unifloral honey characterisation as addition to the melissopalynologycal analysis. The main honey volatiles belong, in general, to three principal categories: terpenes, norisoprenoids, and benzene derivatives. Some of these substances have been described as characteristics of the floral source, and other compounds, like several alcohols, branched aldehydes, and furan derivatives, may be related to the microbial purity of honey processing and storage conditions. Selection of the extraction method for the honey volatiles profiling should consider that heating of the honey produce different artefacts and therefore conventional methods of VOCs isolation (such as hydrodistillation) cannot be applied for the honey. Two-way approach for the isolation of the honey VOCs was applied using headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The extracts were analysed by gas chromatography and mass spectrometry (GC-MS). HS-SPME (with the fibers of different polarity such as polydimethylsiloxane/ divinylbenzene (PDMS/DVB) or divinylbenzene/carboxene/ polydimethylsiloxane (DVB/CAR/PDMS)) enabled isolation of high volatile headspace VOCs of the honey samples. Among them, some characteristic or specific compounds can be found such as 3,4-dihydro-3-oxoedulan (in Centaurea cyanus L. honey) or 1H-indole, methyl anthranilate, and cis-jasmone (in Citrus unshiu Marc. honey). USE with different solvents (mainly dichloromethane or the mixture pentane : diethyl ether 1 : 2 v/v) enabled isolation of less volatile and semi-volatile VOCs of the honey samples. Characteristic compounds from C. unshiu honey extracts were caffeine, 1H-indole, 1,3-dihydro-2H-indol-2-one, methyl anthranilate, and phenylacetonitrile. Sometimes, the selection of solvent sequence was useful for more complete profiling such as sequence I: pentane → diethyl ether or sequence II: pentane → pentane/diethyl ether (1:2, v/v) → dichloromethane). The extracts with diethyl ether contained hydroquinone and 4-hydroxybenzoic acid as the major compounds, while (E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’-trimethylcyclo-hexyl)but-3-en-2-one predominated in dichloromethane extracts of Allium ursinum L. honey. With this two-way approach, it was possible to obtain a more detailed insight into the honey volatile and semi-volatile compounds and to minimize the risks of compound discrimination due to their partial extraction that is of significant importance for the complete honey profiling and identification of the chemical biomarkers that can complement the pollen analysis.

Keywords: honey chemical biomarkers, honey volatile compounds profiling, headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE)

Procedia PDF Downloads 169
3966 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 336
3965 Investigating Selected Traditional African Medicinal Plants for Anti-fibrotic Potential: Identification and Characterization of Bioactive Compounds Through Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry Analysis

Authors: G. V. Manzane, S. J. Modise

Abstract:

Uterine fibroids, also known as leiomyomas or myomas, are non-cancerous growths that develop in the muscular wall of the uterus during the reproductive years. The cause of uterine fibroids includes hormonal, genetic, growth factors, and extracellular matrix factors. Common symptoms of uterine fibroids include heavy and prolonged menstrual bleeding which can lead to a high risk of anemia, lower abdominal pains, pelvic pressure, infertility, and pregnancy loss. The growth of this tumor is a concern because of its negative impact on women’s health and the increase in their economic burden. Traditional medicinal plants have long been used in Africa for their potential therapeutic effects against various ailments. In this study, we aimed to identify and characterize bioactive compounds from selected African medicinal plants with potential anti-fibrotic properties using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. Two medicinal plant species known for their traditional use in fibrosis-related conditions were selected for investigation. Aqueous extracts were prepared from the plant materials, and FTIR analysis was conducted to determine the functional groups present in the extracts. GCMS analysis was performed to identify the chemical constituents of the extracts. The FTIR analysis revealed the presence of various functional groups, such as phenols, flavonoids, terpenoids, and alkaloids, known for their potential therapeutic activities. These functional groups are associated with antioxidant, anti-inflammatory, and anti-fibrotic properties. The GCMS analysis identified several bioactive compounds, including flavonoids, alkaloids, terpenoids, and phenolic compounds, which are known for their pharmacological activities. The discovery of bioactive compounds in African medicinal plants that exhibit anti-fibrotic effects, opens up promising avenues for further research and development of potential treatments for fibrosis. This suggests the potential of these plants as a valuable source of novel therapeutic agents for treating fibrosis-related conditions. In conclusion, our study identified and characterized bioactive compounds from selected African medicinal plants using FTIR and GCMS analysis. The presence of compounds with known antifibrotic properties suggests that these plants hold promise as a potential source of natural products for the development of novel anti-fibrotic therapies.

Keywords: uterine fibroids, african medicinal plants, bioactive compounds, identify and characterized

Procedia PDF Downloads 59
3964 Acute Myocardial Infarction Associated with Ingestion of Herbal Mixtures Containing Acetylcholinesterase Inhibitors: A Case Study

Authors: M. Hakami, A. Jammaly, I. Attafi, M. Oraiby, M. Jeraiby

Abstract:

We reviewed an unusual case of a 65-year-old male taking an herbal mixture containing compounds with anticholinesterase activity for a long period of time, presented with acute my myocardial infarction and multiple organ dysfunction syndrome followed by death. Clinically, there are findings correlated with anticholinesterase activity, such as bilateral miosis, diaphoresis, vomiting and fasciculation without a history of any toxic ingestion or exposure. Gas chromatography–mass spectrometry screening studies identified the presence of thymol, anethole in the herbal extract and butylated hydroxytoluene in the blood sample. Hence, with this case report, we intend to highlight the necessity of evaluating the long-term use of the herbal mixture.

Keywords: cholinesterase inhibitors, thymole, anethole, butylatedhydroxytoluene, cardiac toxicity, myocardial infarction

Procedia PDF Downloads 252
3963 Chemical Composition and Antioxidant Activity of Methanolic Extract of Spilanthes acmella Murr.

Authors: Wanthani Paengsri, Thanyarat Chuesaard, Napapha Promsawan

Abstract:

Spilanthes acmella Murr. was extracted with methanol, yielding methanol crude extract 5.86 %w/w. This study aimed to examine the chemical composition and antioxidant activity of methanolic crude extract. The chemical composition of methanolic crude extract was analyzed by gas chromatography-mass spectrometry (GC-MS). The predominant components were found to be palmitic acid (40.08%), 2-hexadecanoyl glycerol (6.96%) and octadecanoic acid (4.06%). Antioxidant activity was determined using 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical, for evaluating free radicle scavenging activity. The methanolic extract at 150 µg/mL showed an antioxidant activity with high of radical scavenging activity (75.23%).

Keywords: antioxidant activity, GC-MS analysis, Spilanthes, Phak-Kratt Hauwaen

Procedia PDF Downloads 493
3962 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis

Authors: Thanida Sritangthong, Suksun Amornraksa

Abstract:

By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.

Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis

Procedia PDF Downloads 289
3961 Comparison of Different Methods of Microorganism's Identification from a Copper Mining in Pará, Brazil

Authors: Louise H. Gracioso, Marcela P.G. Baltazar, Ingrid R. Avanzi, Bruno Karolski, Luciana J. Gimenes, Claudio O. Nascimento, Elen A. Perpetuo

Abstract:

Introduction: Higher copper concentrations promote a selection pressure on organisms such as plants, fungi and bacteria, which allows surviving only the resistant organisms to the contaminated site. This selective pressure keeps only the organisms most resistant to a specific condition and subsequently increases their bioremediation potential. Despite the bacteria importance for biosphere maintenance, it is estimated that only a small fraction living microbial species has been described and characterized. Due to the molecular biology development, tools based on analysis 16S ribosomal RNA or another specific gene are making a new scenario for the characterization studies and identification of microorganisms in the environment. News identification of microorganisms methods have also emerged like Biotyper (MALDI / TOF), this method mass spectrometry is subject to the recognition of spectroscopic patterns of conserved and features proteins for different microbial species. In view of this, this study aimed to isolate bacteria resistant to copper present in a Copper Processing Area (Sossego Mine, Canaan, PA) and identifies them in two different methods: Recent (spectrometry mass) and conventional. This work aimed to use them for a future bioremediation of this Mining. Material and Methods: Samples were collected at fifteen different sites of five periods of times. Microorganisms were isolated from mining wastes by culture enrichment technique; this procedure was repeated 4 times. The isolates were inoculated into MJS medium containing different concentrations of chloride copper (1mM, 2.5mM, 5mM, 7.5mM and 10 mM) and incubated in plates for 72 h at 28 ºC. These isolates were subjected to mass spectrometry identification methods (Biotyper – MALDI/TOF) and 16S gene sequencing. Results: A total of 105 strains were isolated in this area, bacterial identification by mass spectrometry method (MALDI/TOF) achieved 74% agreement with the conventional identification method (16S), 31% have been unsuccessful in MALDI-TOF and 2% did not obtain identification sequence the 16S. These results show that Biotyper can be a very useful tool in the identification of bacteria isolated from environmental samples, since it has a better value for money (cheap and simple sample preparation and MALDI plates are reusable). Furthermore, this technique is more rentable because it saves time and has a high performance (the mass spectra are compared to the database and it takes less than 2 minutes per sample).

Keywords: copper mining area, bioremediation, microorganisms, identification, MALDI/TOF, RNA 16S

Procedia PDF Downloads 351
3960 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah

Abstract:

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Keywords: methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial

Procedia PDF Downloads 307
3959 Isolation, Characterization and Biological Activities of Compounds Isolated from Callicarpa maingayi

Authors: Muhammad A. Ado, Intan S. Ismail, Hasanah M. Ghazali, Faridah Abas

Abstract:

In this study, we have investigated the phytochemical constituents of soluble fractions of dichloromethane (DCM) of methanolic leaves extract of the Callicarpa maingayi. The phytochemicals investigation has resulted in the isolation of three triterpenoids (euscaphic acid (1), arjunic acid (2), and ursolic acid (3)) together with two flavones apigenin (4) and acacetin (5)), two phytosterols (stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)), and one fatty acid (n-hexacosanoic acid (8)). Six (6) compounds isolated from this species were isolated for the first time (1, 2, 3, 4, 5, and 8). Their structures were elucidated and identified by spectral methods of one and two-dimensional NMR techniques, gas chromatography-mass spectrometry, and comparison with the previously reported literature. The biological activity of three compounds (1-3) was carried out on acetylcholinesterase inhibition activity. Compound (3) was found to displayed good inhibition against AChE with an IC₅₀ value of 21.5 ± 0.022 μM.

Keywords: acetylcholinesterase, Callicarpa maingayi, euscaphic acid, ursolic acid

Procedia PDF Downloads 113
3958 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 212
3957 Chemometric Determination of the Geographical Origin of Milk Samples in Malaysia

Authors: Shima Behkami, Nor Shahirul Umirah Idris, Sharifuddin Md. Zain, Kah Hin Low, Mehrdad Gholami, Nima A. Behkami, Ahmad Firdaus Kamaruddin

Abstract:

In this work, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Isotopic Ratio Mass Spectrometry (IRMS) and Ultrasound Milko Tester were used to study milk samples obtained from various geographical locations in Malaysia. ICP-MS was used to determine the concentration of trace elements in milk, water and soil samples obtained from seven dairy farms at different geographical locations in peninsular Malaysia. IRMS was used to analyze the milk samples for isotopic ratios of δ13C, 15N and 18O. Nutritional parameters in the milk samples were determined using an ultrasound milko tester. Data obtained from these measurements were evaluated by Principal Component Analysis (PCA) and Hierarchical Analysis (HA) as a preliminary step in determining geographical origin of these milk samples. It is observed that the isotopic ratios and a number of the nutritional parameters are responsible for the discrimination of the samples. It was also observed that it is possible to determine the geographical origin of these milk samples solely by the isotopic ratios of δ13C, 15N and 18O. The accuracy of the geographical discrimination is demonstrated when several milk samples from a milk factory taken from one of the regions under study were appropriately assigned to the correct PCA cluster.

Keywords: inductively coupled plasma mass spectroscopy ICP-MS, isotope ratio mass spectroscopy IRMS, ultrasound, principal component analysis, hierarchical analysis, geographical origin, milk

Procedia PDF Downloads 338
3956 Chemical Analysis of Particulate Matter (PM₂.₅) and Volatile Organic Compound Contaminants

Authors: S. Ebadzadsahraei, H. Kazemian

Abstract:

The main objective of this research was to measure particulate matter (PM₂.₅) and Volatile Organic Compound (VOCs) as two classes of air pollutants, at Prince George (PG) neighborhood in warm and cold seasons. To fulfill this objective, analytical protocols were developed for accurate sampling and measurement of the targeted air pollutants. PM₂.₅ samples were analyzed for their chemical composition (i.e., toxic trace elements) in order to assess their potential source of emission. The City of Prince George, widely known as the capital of northern British Columbia (BC), Canada, has been dealing with air pollution challenges for a long time. The city has several local industries including pulp mills, a refinery, and a couple of asphalt plants that are the primary contributors of industrial VOCs. In this research project, which is the first study of this kind in this region it measures physical and chemical properties of particulate air pollutants (PM₂.₅) at the city neighborhood. Furthermore, this study quantifies the percentage of VOCs at the city air samples. One of the outcomes of this project is updated data about PM₂.₅ and VOCs inventory in the selected neighborhoods. For examining PM₂.₅ chemical composition, an elemental analysis methodology was developed to measure major trace elements including but not limited to mercury and lead. The toxicity of inhaled particulates depends on both their physical and chemical properties; thus, an understanding of aerosol properties is essential for the evaluation of such hazards, and the treatment of such respiratory and other related diseases. Mixed cellulose ester (MCE) filters were selected for this research as a suitable filter for PM₂.₅ air sampling. Chemical analyses were conducted using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for elemental analysis. VOCs measurement of the air samples was performed using a Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) allowing for quantitative measurement of VOC molecules in sub-ppb levels. In this study, sorbent tube (Anasorb CSC, Coconut Charcoal), 6 x 70-mm size, 2 sections, 50/100 mg sorbent, 20/40 mesh was used for VOCs air sampling followed by using solvent extraction and solid-phase micro extraction (SPME) techniques to prepare samples for measuring by a GC-MS/FID instrument. Air sampling for both PM₂.₅ and VOC were conducted in summer and winter seasons for comparison. Average concentrations of PM₂.₅ are very different between wildfire and daily samples. At wildfire time average of concentration is 83.0 μg/m³ and daily samples are 23.7 μg/m³. Also, higher concentrations of iron, nickel and manganese found at all samples and mercury element is found in some samples. It is able to stay too high doses negative effects.

Keywords: air pollutants, chemical analysis, particulate matter (PM₂.₅), volatile organic compound, VOCs

Procedia PDF Downloads 113