Search results for: monoclonal antibodies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 298

Search results for: monoclonal antibodies

298 Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids

Authors: Hiroshi Nakayama, Yuji Ito

Abstract:

Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids.

Keywords: ELISA, monoclonal antibody, sensor, synthetic cannabinoid

Procedia PDF Downloads 313
297 Pathogenic Effects of IgG and IgM Apoptotic Cell-Reactive Monoclonal Auto-Antibodies on Innate and Adaptive Immunity in Lupus

Authors: Monika Malik, Pooja Arora, Ruchi Sachdeva, Vishnampettai G. Ramachandran, Rahul Pal

Abstract:

Apoptotic debris is believed to be the antigenic trigger in lupus. Whether such debris and autoantibodies induced in lupus-prone mice which specifically recognize its constituents can mediate differential effects on innate and humoral responses in such mice was assessed. The influence of apoptotic blebs and apoptotic cell-reactive monoclonal antibodies on phenotypic markers expressed on bone marrow-derived dendritic cells (BMDCs) and secreted cytokines were evaluated. Sera from lupus-prone and healthy mice immunized with the antibodies were analyzed for anti-self reactivity. Apoptotic blebs, as well as somatically-mutated IgG and non-mutated IgM apoptotic-cell reactive monoclonal antibodies, induced the preferential maturation of BMDCs derived from lupus-prone mice relative to BMDCs derived from healthy mice; antibody specificity and cell genotype both influenced the secretion of inflammatory cytokines. Immunization of lupus-prone mice with IgM and IgG antibodies led to hypergammaglobulinemia; elicited antibodies were self-reactive, and exhibited enhanced recognition of lupus-associated autoantigens (dsDNA, Ro60, RNP68, and Sm) in comparison with adjuvant-induced sera. While ‘natural’ IgM antibodies are believed to contribute to immune homeostasis, this study reveals that apoptotic cell-reactive IgM antibodies can promote inflammation and drive anti-self responses in lupus. Only in lupus-prone mice did immunization with IgG auto-antibodies enhance the kinetics of humoral anti-self responses, resulting in advanced-onset glomerulosclerosis. This study reveals that preferential innate and humoral recognition of the products of cell death in an autoimmune milieu influences the indices associated with lupus pathology.

Keywords: antigen spreading, apoptotic cell-reactive pathogenic IgG, and IgM autoantibodies, glomerulosclerosis, lupus

Procedia PDF Downloads 139
296 Capability of a Single Antigen to Induce Both Protective and Disease Enhancing Antibody: An Obstacle in the Creation of Vaccines and Passive Immunotherapies

Authors: Parul Kulshreshtha, Subrata Sinha, Rakesh Bhatnagar

Abstract:

This study was conducted by taking B. anthracis as a model pathogen. On infecting a host, B. anthracis secretes three proteins, namely, protective antigen (PA, 83kDa), edema factor (EF, 89 kDa) and lethal factor (LF, 90 kDa). These three proteins are the components of two anthrax toxins. PA binds to the cell surface receptors, namely, tumor endothelial marker (TEM) 8 and capillary morphogenesis protein (CMG) 2. TEM8 and CMG2 interact with LDL-receptor related protein (LRP) 6 for endocytosis of EF and LF. On entering the cell, EF acts as a calmodulin-dependent adenylate cyclase that causes a prolonged increase of cytosolic cyclic adenosine monophosphate (cAMP). LF is a metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MAPKK/MEK) close to their N-terminus. By secreting these two toxins, B.anthracis ascertains death of the host. Once the systemic levels of the toxins rise, antibiotics alone cannot save the host. Therefore, toxin-specific inhibitors have to be developed. In this wake, monoclonal antibodies have been developed for the neutralization of toxic effects of anthrax toxins. We created hybridomas by using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor of B. anthracis) to obtain anti-toxin antibodies. Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immunized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies from all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H8 and H10) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). The protective efficacy of H7, H8, H10 and H11 was investigated. H7, H8 and H10 were found to be protective. H11 was found to have disease enhancing characteristics in-vitro and in mouse model of challenge with B. anthracis. In this study the disease enhancing character of H11 monoclonal antibody and anti-rLFn polyclonal sera was investigated. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature both in-vitro and in-vivo. But combination of H11 with LETscFv (an scFv with VH and VL identical to H10 but lacking Fc region) could not abrogate the disease-enhancing character of H11 mAb. Therefore it was concluded that for suppression of disease enhancement, Fc portion was absolutely essential for interaction of H10 with H11. Our study indicates that the protective potential of an antibody depends equally on its idiotype/ antigen specificity and its isotype. A number of monoclonal and engineered antibodies are being explored as immunotherapeutics but it is absolutely essential to characterize each one for their individual and combined protective potential. Although new in the sphere of toxin-based diseases, it is extremely important to characterize the disease-enhancing nature of polyclonal as well as monoclonal antibodies. This is because several anti-viral therapeutics and vaccines have failed in the face of this phenomenon. The passive –immunotherapy thus needs to be well formulated to avoid any contraindications.

Keywords: immunotherapy, polyclonal, monoclonal, antibody-dependent disease enhancement

Procedia PDF Downloads 350
295 Removal of Aggregates of Monoclonal Antibodies by Ion Exchange Chrmoatography

Authors: Ishan Arora, Anurag Rathore

Abstract:

The primary objective of this work was to study the effect of resin chemistry, pH and molarity of binding and elution buffer on aggregate removal using Cation Exchange Chromatography and find the optimum conditions which can give efficient aggregate removal with minimum loss of yield. Four different resins were used for carrying out the experiments: Fractogel EMD SO3-(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs were carried out on the AKTA Avant system. Design of Experiments (DOE) was used for analysis using the JMP software. The dependence of the yield obtained using different resins on the operating conditions was studied. Success has been achieved in obtaining yield greater than 90% using Capto SP ImpRes and Fractogel EMD COO-(M) resins. It has also been found that a change in the operating conditions generally has different effects on the yields obtained using different resins.

Keywords: aggregates, cation exchange chromatography, design of experiments, monoclonal antibodies

Procedia PDF Downloads 228
294 Removal of Aggregates of Monoclonal Antibodies by Ion Exchange Chromatography

Authors: Ishan Arora, Anurag Rathore

Abstract:

The primary objective of this work was to study the effect of resin chemistry, pH and molarity of binding and elution buffer on aggregate removal using Cation Exchange Chromatography and find the optimum conditions which can give efficient aggregate removal with minimum loss of yield. Four different resins were used for carrying out the experiments: Fractogel EMD SO3-(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs were carried out on the AKTA Avant system. Design of Experiments (DOE) was used for analysis using the JMP software. The dependence of the yield obtained using different resins on the operating conditions was studied. Success has been achieved by obtaining yield greater than 90% using Capto SP ImpRes and Fractogel EMD COO-(M) resins. It has also been found that a change in the operating conditions generally has different effects on the yields obtained using different resins.

Keywords: aggregates, cation exchange chromatography, design of experiments, monoclonal antibodies

Procedia PDF Downloads 230
293 Development and Evaluation of Novel Diagnostic Methods for Infectious Rhinotracheitis of Cattle

Authors: Wenxiao Liu, Kun Zhang, Yongqing Li

Abstract:

Bovine herpesvirus 1, a member of the genus Variellovirus of the subfamily Alphaherpesvirinae, has caused severe economic cost to the bovine industry. In this study, BoHV-1 glycerol protein gD was expressed in insect cells, and the purified gD was immunized in the Balb/C mice to generate monoclonal antibodies. Based on hybridoma cell fusion techniques, 20 monoclonal antibodies against Bovine herpesvirus 1 have been obtained. Further, mAb 3F8 with neutralizing activity and gD were applied to develop a blocking enzyme-linked immunosorbent assay (Elisa) for detecting neutralizing antibodies against BoHV-1, which shows a significant correlation between the blocking Elisa and VNT. The sensitivity and specificity of the test were estimated to be 94.59% and 93.42%, respectively. Furthermore, antibody pairing tests revealed that mAb 1B6 conjugated to fluorescence microspheres was used as the capture antibody, and mAb 3F9 was used as the detectable antibody to establish the immunochromatographic assay (ICS). The ICS was conducted to detect BoHV-1 in bovine samples with high sensitivity, specificity, and good stability. Clinical sample testing revealed that the results of ICS and real-time PCR have a coincidence rate of 95.42%. Our research confirmed that the ICS is a rapid and reliable method for the diagnosis of BoHV-1. In conclusion, our results lay a solid foundation for the prevention and control of BoHV-1 infection.

Keywords: bovine disease, BoHV-1, ELISA, ICS assay

Procedia PDF Downloads 31
292 Comparative Evaluation of Pharmacologically Guided Approaches (PGA) to Determine Maximum Recommended Starting Dose (MRSD) of Monoclonal Antibodies for First Clinical Trial

Authors: Ibraheem Husain, Abul Kalam Najmi, Karishma Chester

Abstract:

First-in-human (FIH) studies are a critical step in clinical development of any molecule that has shown therapeutic promise in preclinical evaluations, since preclinical research and safety studies into clinical development is a crucial step for successful development of monoclonal antibodies for guidance in pharmaceutical industry for the treatment of human diseases. Therefore, comparison between USFDA and nine pharmacologically guided approaches (PGA) (simple allometry, maximum life span potential, brain weight, rule of exponent (ROE), two species methods and one species methods) were made to determine maximum recommended starting dose (MRSD) for first in human clinical trials using four drugs namely Denosumab, Bevacizumab, Anakinra and Omalizumab. In our study, the predicted pharmacokinetic (pk) parameters and the estimated first-in-human dose of antibodies were compared with the observed human values. The study indicated that the clearance and volume of distribution of antibodies can be predicted with reasonable accuracy in human and a good estimate of first human dose can be obtained from the predicted human clearance and volume of distribution. A pictorial method evaluation chart was also developed based on fold errors for simultaneous evaluation of various methods.

Keywords: clinical pharmacology (CPH), clinical research (CRE), clinical trials (CTR), maximum recommended starting dose (MRSD), clearance and volume of distribution

Procedia PDF Downloads 346
291 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum

Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*

Abstract:

African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.

Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity

Procedia PDF Downloads 44
290 Developing a Systemic Monoclonal Antibody Therapy for the Treatment of Large Burn Injuries

Authors: Alireza Hassanshahi, Xanthe Strudwick, Zlatko Kopecki, Allison J Cowin

Abstract:

Studies have shown that Flightless (Flii) is elevated in human wounds, including burns, and reducing the level of Flii is a promising approach for improving wound repair and reducing scar formation. The most effective approach has been to neutralise Flii activity using localized, intradermal application of function blocking monoclonal antibodies. However, large surface area burns are difficult to treat by intradermal injection of therapeutics, so the aim of this study was to investigate if a systemic injection of a monoclonal antibody against Flii could improve healing in mice following burn injury. Flii neutralizing antibodies (FnAbs) were labelled with Alxa-Fluor-680 for biodistribution studies and the healing effects of systemically administered FnAbs to mice with burn injuries. A partial thickness, 7% (70mm2) total body surface area scald burn injury was created on the dorsal surface of mice (n=10/group), and 100µL of Alexa-Flour-680-labeled FnAbs were injected into the intraperitoneal cavity (IP) at time of injury. The burns were imaged on days 0, 1, 2, 3, 4, and 7 using IVIS Lumina S5 Imaging System, and healing was assessed macroscopically, histologically, and using immunohistochemistry. Fluorescent radiance efficiency measurements showed that IP injected Alexa-Fluor-680-FnAbs localized at the site of burn injury from day 1, remaining there for the whole 7-day study. The burns treated with FnAbs showed a reduction in macroscopic wound area and an increased rate of epithelialization compared to controls. Immunohistochemistry for NIMP-R14 showed a reduction in the inflammatory infiltrate, while CD31/VEGF staining showed improved angiogenesis post-systemic FnAb treatment. These results suggest that systemically administered FnAbs are active within the burn site and can improve healing outcomes. The clinical application of systemically injected Flii monoclonal antibodies could therefore be a potential approach for promoting the healing of large surface area burns immediately after injury.

Keywords: biodistribution, burn, flightless, systemic, fnAbs

Procedia PDF Downloads 139
289 Targeting Trypanosoma brucei Using Antibody Drug Conjugates against the Transferrin Receptor

Authors: Camilla Trevor, Matthew K. Higgins, Andrea Gonzalez-Munoz, Mark Carrington

Abstract:

Trypanosomiasis is a devastating disease affecting both humans and livestock in sub-Saharan Africa. The diseases are caused by infection with African trypanosomes, protozoa transmitted by tsetse flies. Treatment currently relies on the use of chemotherapeutics with ghastly side effects. Here, we describe the development of effective antibody-drug conjugates that target the T. brucei transferrin receptor. The receptor is essential for trypanosome growth in a mammalian host but there are approximately 12 variants of the transferrin receptor in the genome. Two of the most divergent variants were used to generate recombinant monoclonal immunoglobulin G using phage display and we identified cross-reactive antibodies that bind both variants using phage ELISA, fluorescence resonance energy transfer assays and surface plasmon resonance. Fluorescent antibodies were used to demonstrate uptake into trypanosomes in culture. Toxin-conjugated antibodies were effective at killing trypanosomes at sub-nanomolar concentrations. The approach of using antibody-drug conjugates has proven highly effective.

Keywords: antibody-drug conjugates, phage display, transferrin receptor, trypanosomes

Procedia PDF Downloads 129
288 Biospiral-Detect to Distinguish PrP Multimers from Monomers

Authors: Gulyas Erzsebet

Abstract:

The multimerisation of proteins is a common feature of many cellular processes; however, it could also impair protein functions and/or be associated with the occurrence of diseases. Thus, development of a research tool monitoring the appearance/presence of multimeric protein forms has great importance for a variety of research fields. Such a tool is potentially applicable in the ante-mortem diagnosis of certain conformational diseases, such as transmissible spongiform encephalopathies (TSE) and Alzheimer’s disease. These conditions are accompanied by the appearance of aggregated protein multimers, present in low concentrations in various tissues. This detection is particularly relevant for TSE where the handling of tissues derived from affected individuals and of meat products of infected animals have become an enormous health concern. Here we demonstrate the potential of such a multimer detection approach in TSE by developing a facile approach. The Biospiral-Detect system resembles a traditional sandwich ELISA, except that the capturing antibody that is attached to a solid surface and the detecting antibody is directed against the same or overlapping epitopes. As a consequence, the capturing antibody shields the epitope on the captured monomer from reacting with the detecting antibody, therefore monomers are not detected. Thus, MDS is capable of detecting only protein multimers with high specificity. We developed an alternative system as well, where RNA aptamers were employed instead of monoclonal antibodies. In order to minimize degradation, the 3' and 5' ends of the aptamer contained deoxyribonucleotides and phosphorothioate linkages. When compared the monoclonal antibodies-based system with the aptamers-based one, the former proved to be superior. Thus all subsequent experiments were conducted by employing the Biospiral -Detect modified sandwich ELISA kit. Our approach showed an order of magnitude higher sensitivity toward mulimers than monomers suggesting that this approach may become a valuable diagnostic tool for conformational diseases that are accompanied by multimerization.

Keywords: diagnosis, ELISA, Prion, TSE

Procedia PDF Downloads 222
287 Nano-Immunoassay for Diagnosis of Active Schistosomal Infection

Authors: Manal M. Kame, Hanan G. El-Baz, Zeinab A.Demerdash, Engy M. Abd El-Moneem, Mohamed A. Hendawy, Ibrahim R. Bayoumi

Abstract:

There is a constant need to improve the performance of current diagnostic assays of schistosomiasis as well as develop innovative testing strategies to meet new testing challenges. This study aims at increasing the diagnostic efficiency of monoclonal antibody (MAb)-based antigen detection assays through gold nanoparticles conjugated with specific anti-Schistosoma mansoni monoclonal antibodies. In this study, several hybidoma cell lines secreting MAbs against adult worm tegumental Schistosoma antigen (AWTA) were produced at Immunology Department of Theodor Bilharz Research Institute and preserved in liquid nitrogen. One MAb (6D/6F) was chosen for this study due to its high reactivity to schistosome antigens with highest optical density (OD) values. Gold nanoparticles (AuNPs) were functionalized and conjugated with MAb (6D/6F). The study was conducted on serum samples of 116 subjects: 71 patients with S. mansoni eggs in their stool samples group (gp 1), 25 with other parasites (gp2) and 20 negative healthy controls (gp3). Patients in gp1 were further subdivided according to egg count in their stool samples into Light infection {≤ 50 egg per gram(epg) (n= 17)}, moderate {51-100 epg (n= 33)} and severe infection {>100 epg(n= 21)}. Sandwich ELISA was performed using (AuNPs -MAb) for detection of circulating schistosomal antigen (CSA) levels in serum samples of all groups and the results were compared with that after using MAb/ sandwich ELISA system. Results Gold- MAb/ ELISA system reached a lower detection limit of 10 ng/ml compared to 85 ng/ml on using MAb/ ELISA and the optimal concentrations of AuNPs -MAb were found to be 12 folds less than that of MAb/ ELISA system for detection of CSA. The sensitivity and specificity of sandwich ELISA for detection of CSA levels using AuNPs -MAb were 100% & 97.8 % respectively compared to 87.3% &93.38% respectively on using MAb/ ELISA system. It was found that CSA was detected in 9 out of 71 S.mansoni infected patients on using AuNPs - MAb/ ELISA system and was not detected by MAb/ ELISA system. All those patients (9) was found to have an egg count below 50 epg feces (patients with light infections). ROC curve analyses revealed that sandwich ELISA using gold-MAb was an excellent diagnostic investigator that could differentiate Schistosoma patients from healthy controls, on the other hand it revealed that sandwich ELISA using MAb was not accurate enough as it could not recognize nine out of 71 patients with light infections. Conclusion Our data demonstrated that: Loading gold nanoparticles with MAb (6D/6F) increases the sensitivity and specificity of sandwich ELISA for detection of CSA, thus active (early) and light infections could be easily detected. Moreover this binding will decrease the amount of MAb consumed in the assay and lower the coast. The significant positive correlation that was detected between ova count (intensity of infection) and OD reading in sandwich ELISA using gold- MAb enables its use to detect the severity of infections and follow up patients after treatment for monitoring of cure.

Keywords: Schistosomiasis, nanoparticles, gold, monoclonal antibodies, ELISA

Procedia PDF Downloads 335
286 Leptospira Lipl32-Specific Antibodies: Therapeutic Property, Epitopes Characterization and Molecular Mechanisms of Neutralization

Authors: Santi Maneewatchararangsri, Wanpen Chaicumpa, Patcharin Saengjaruk, Urai Chaisri

Abstract:

Leptospirosis is a globally neglected disease that continues to be a significant public health and veterinary burden, with millions of cases reported each year. Early and accurate differential diagnosis of leptospirosis from other febrile illnesses and the development of a broad spectrum of leptospirosis vaccines are needed. The LipL32 outer membrane lipoprotein is a member of Leptospira adhesive matrices and has been found to exert hemolytic activity to erythrocytes in vitro. Therefore, LipL32 is regarded as a potential target for diagnosis, broad-spectrum leptospirosis vaccines, and for passive immunotherapy. In this study, we established LipL32-specific mouse monoclonal antibodies, mAbLPF1 and mAbLPF2, and their respective mouse- and humanized-engineered single chain variable fragment (ScFv). Their antibodies’ neutralizing activities against Leptospira-mediated hemolysis in vitro, and the therapeutic efficacy of mAbs against heterologous Leptospira infected hamsters were demonstrated. The epitope peptide of mAb LPF1 was mapped to a non-contiguous carboxy-terminal β-turn and amphipathic α-helix of LipL32 structure contributing to phospholipid/host cell adhesion and membrane insertion. We found that the mAbLPF2 epitope was located on the interacting loop of peptide binding groove of the LipL32 molecule responsible for interactions with host constituents. Epitope sequences are highly conserved among Leptospira spp. and are absent from the LipL32 superfamily of other microorganisms. Both epitopes are surface-exposed, readily accessible by mAbs, and immunogenic. However, they are less dominant when revealed by LipL32-specific immunoglobulins from leptospirosis-patient sera and rabbit hyperimmune serum raised by whole Leptospira. Our study also demonstrated an adhesion inhibitory activity of LipL32 protein to host membrane components and cells mediated by mAbs as well as an anti-hemolytic activity of the respective antibodies. The therapeutic antibodies, particularly the humanized-ScFv, have a potential for further development as non-drug therapeutic agent for human leptospirosis, especially in subjects allergic to antibiotics. The epitope peptides recognized by two therapeutic mAbs have potential use as tools for structure-function studies. Finally, protective peptides may be used as a target for epitope-based vaccines for control of leptospirosis.

Keywords: leptospira lipl32-specific antibodies, therapeutic epitopes, epitopes characterization, immunotherapy

Procedia PDF Downloads 264
285 An Approach to Make an Adaptive Immunoassay to Detect an Unknown Disease

Authors: Josselyn Mata Calidonio, Arianna I. Maddox, Kimberly Hamad-Schifferli

Abstract:

Rapid diagnostics are critical infectious disease tools that are designed to detect a known biomarker using antibodies specific to that biomarker. However, a way to detect unknown viruses has not yet been achieved in a paper test format. We describe here a route to make an adaptable paper immunoassay that can detect an unknown biomarker, demonstrating it on SARS-CoV-2 variants. The immunoassay repurposes cross-reactive antibodies raised against the alpha variant. Gold nanoparticles of two different colors conjugated to two different antibodies create a colorimetric signal, and machine learning of the resulting colorimetric pattern is used to train the assay to discriminate between variants of alpha and Omicron BA.5. By using principal component analysis, the colorimetric test patterns can pick up and discriminate an unknown that it has not encountered before, Omicron BA.1. The test has an accuracy of 100% and a potential calculated discriminatory power of 900. We show that it can be used adaptively and that it can be used to pick up emerging variants without the need to raise new antibodies.

Keywords: adaptive immunoassay, detecting unknown viruses, gold nanoparticles, paper immunoassay, repurposing antibodies

Procedia PDF Downloads 78
284 Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition Inhibits by INT3 & Quercetin in MCF7 Cell Lines

Authors: D. Pradhan, G. Tripathy, S. Pradhan

Abstract:

Objectives: Imperviousness gainst estrogen treatments is a noteworthy reason for infection backslide and mortality in estrogen receptor alpha (ERα)- positive breast diseases. Tamoxifen or estrogen withdrawal builds the reliance of breast malignancy cells on INT3 flagging. Here, we researched the commitment of Quercetin and INT3 motioning in endocrine-safe breast tumor cells. Methods: We utilized two models of endocrine treatments safe (ETR) breast tumor: Tamoxifen-safe (TamR) and long haul estrogen-denied (LTED) MCF7 cells. We assessed the transitory and intrusive limit of these cells by Transwell cells. Articulation of epithelial to mesenchymal move (EMT) controllers and in addition INT3 receptors and targets were assessed by constant PCR and western smudge investigation. Besides, we tried in-vitro hostile to Quercetin monoclonal Antibodies (mAbs) and Gamma Secretase Inhibitors (GSIs) as potential EMT inversion remedial specialists. At last, we created stable Quercetin overexpressing MCF7 cells and assessed their EMT components and reaction to Tamoxifen. Results: We found that ETR cells procured an Epithelial to Mesenchymal move (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we distinguished more elevated amount of INT3 however lower levels of INT1 and INT3 proposing a change to motioning through distinctive INT3 receptors after obtaining of resistance. Against Quercetin monoclonal antibodies and the GSI PF03084014 were powerful in obstructing the Quercetin/INT3 pivot and in part repressing the EMT process. As a consequence of this, cell relocation and attack were weakened and the immature microorganism like populace was essentially decreased. Hereditary hushing of Quercetin and INT3 prompted proportionate impacts. At long last, stable overexpression of Quercetin was adequate to make MCF7 lethargic to Tamoxifen by INT3 initiation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives intrusive conduct. Hostile to Quercetin mAbs and GSI PF03084014 lessen articulation of EMT particles decreasing cell obtrusiveness. Quercetin overexpression instigates Tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and INT3 warrants further clinical Correlation as substantial restorative methodologies in endocrine-safe breast.

Keywords: endocrine, epithelial, mesenchymal, INT3, quercetin, MCF7

Procedia PDF Downloads 270
283 Surveillance for African Swine Fever and Classical Swine Fever in Benue State, Nigeria

Authors: A. Asambe, A. K. B. Sackey, L. B. Tekdek

Abstract:

A serosurveillance study was conducted to detect the presence of antibodies to African swine fever virus (ASFV) and Classical swine fever virus in pigs sampled from piggeries and Makurdi central slaughter slab in Benue State, Nigeria. 416 pigs from 74 piggeries across 12 LGAs and 44 pigs at the Makurdi central slaughter slab were sampled for serum. The sera collected were analysed using Indirect Enzyme Linked Immunosorbent Assay (ELISA) test kit to test for antibodies to ASFV, while competitive ELISA test kit was used to test for antibodies to CSFV. Of the 416 pigs from piggeries and 44 pigs sampled from the slaughter slab, seven (1.7%) and six (13.6%), respectively, tested positive to ASFV antibodies and was significantly associated (p < 0.0001). Out of the 12 LGAs sampled, Obi LGA had the highest ASFV antibody detection rate of (4.8%) and was significantly associated (p < 0.0001). None of the samples tested positive to CSFV antibodies. The study concluded that antibodies to CSFV were absent in the sampled pigs in piggeries and at the Makurdi central slaughter slab in Benue State, while antibodies to ASFV were present in both locations; hence, the need to keep an eye open for CSF too since both diseases may pose great risk in the study area. Further studies to characterise the ASFV circulating in Benue State and investigate the possible sources is recommended. Routine surveillance to provide a comprehensive and readily accessible data base to plan for the prevention of any fulminating outbreak is also recommended.

Keywords: African swine fever, classical swine fever, piggery, slaughter slab, surveillance

Procedia PDF Downloads 158
282 Screening of Thyroid Stimulating Hormone Using Paper-Based Lateral Flow Device

Authors: Pattarachaya Preechakasedkit, Kota Osada, Koji Suzuki, Daniel Citterio, Orawon Chailapakul

Abstract:

A paper-based lateral flow device for screening thyroid stimulating hormone (TSH) is reported. A sandwich immunoassay was performed using two mouse monoclonal TSH antibodies (anti-hTSH 5403 and 5404) as immobilized and labeled antibodies for capturing TSH samples. Test (anti-hTSH 5403) and control (goat anti-Mouse IgG) lines were fabricated on nitrocellulose membrane (NCM) using ballpoint pen printed with a speed of 3 cm/s and thickness setting of 1. The novel gold nanoparticles europium complex (AuNPs@Eu) was used as fluorescence label compared to conventional AuNPs label. The results obtained with this device can be visually assessed by the naked eyes and under UV hand lamps, and quantitative analysis can be performed using the ImageJ program. The limit of detection (LOD) under UV hand lamps (0.1 µIU/mL) provided 50-fold greater sensitivity than AuNPs (5 µIU/mL), which is suitable for both hypothyroidism and hyperthyroidism screening within 30 min. A linear relationship between the red intensity and the logarithmic concentrations of TSH was observed with a good correlation (R²=0.992). Furthermore, the device can be effectively applied for screening TSH in the spiked human serum with recovery range of 96.80-104.45% and RSD of 2.18-3.63%. Therefore, the developed device is an alternative method for TSH screening which provides a lot of advantages including low cost, short time analysis, ease of use, disposability, portability, and on-site measurement.

Keywords: thyroid stimulating hormone, paper-based lateral flow, hypothyroidism, hyperthyroidism

Procedia PDF Downloads 328
281 Quercetin and INT3 Inhibits Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition in MCF7 Breast Cancer Cells

Authors: S. Pradhan, D. Pradhan, G. Tripathy

Abstract:

Anti-estrogen treatment resistant is a noteworthy reason for disease relapse and mortality in estrogen receptor alpha (ERα)- positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependance of breast malignancy cells on INT3 signaling. Here, we researched the contribution of Quercetin and INT3 signaling in endocrine resistant breast cancer cells. Methods: We utilized two models of endocrine therapies resistant (ETR-) breast cancer: tamoxifen-resistant (TamR) and long term estrogen-deprived (LTED) MCF7 cells. We assessed the migratory and invasive limit of these cells by Transwell assay. Expression of epithelial to mesenchymal transition (EMT) controllers and in addition INT3 receptors and targets were assessed by real-time PCR and western blot analysis. Besides, we tried in vitro anti-Quercetin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. At last, we created stable Quercetin over expessing MCF7 cells and assessed their EMT features and response to tamoxifen. Results:We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we detected higher level of INT3 however lower levels of INT31 and INT32 proposing a switch to targeting through distinctive INT3 receptors after obtaining of resistance. Anti-Quercetin monoclonal antibodies and the GSI PF03084014 were effective in obstructing the Quercetin/INT3 axis and in part inhibiting the EMT process. As a consequence of this, cell migration and invasion were weakened and the stem cell like population was considerably decreased. Genetic hushing of Quercetin and INT3 prompted proportionate impacts. Finally, stable overexpression of Quercetin was adequate to make MCF7 lethargic to tamoxifen by INT3 activation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives invasive conduct. Anti-Quercetin mAbs and GSI PF03084014 lessen expression of EMT molecules decreasing cellular invasiveness. Quercetin overexpression instigates tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and/or INT3 warrants further clinical assessment as substantial therapeutic methodologies in endocrine-resistant breast cancer.

Keywords: quercetin, INT3, mesenchymal transition, MCF7 breast cancer cells

Procedia PDF Downloads 288
280 Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants

Authors: Robert van Ling, Alexander Schwahn, Shanhua Lin, Ken Cook, Frank Steiner, Rowan Moore, Mauro de Pra

Abstract:

Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput.

Keywords: charge variants, ion exchange chromatography, monoclonal antibody, UHPLC

Procedia PDF Downloads 400
279 Evaluation of Immune Checkpoint Inhibitors in Cancer Therapy

Authors: Mir Mohammad Reza Hosseini

Abstract:

In new years immune checkpoint inhibitors have gathered care as being one of the greatest talented kinds of immunotherapy on the prospect. There has been a specific emphasis on the immune checkpoint molecules, cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). In 2011, ipilimumab, the primary antibody obstructive an immune checkpoint (CTLA4) was authorized. It is now documented that recognized tumors have many devices of overpowering the antitumor immune response, counting manufacture of repressive cytokines, staffing of immunosuppressive immune cells, and upregulation of coinhibitory receptors recognized as immune checkpoints. This was fast followed by the growth of monoclonal antibodies directing PD1 (pembrolizumab and nivolumab) and PDL1 (atezolizumab and durvalumab). Anti-PD1/PDL1 antibodies have developed some of the greatest extensively set anticancer therapies. We also compare and difference their present place in cancer therapy and designs of immune-related toxicities and deliberate the role of dual immune checkpoint inhibition and plans for the organization of immune-related opposing proceedings. In this review, the employed code and present growth of numerous immune checkpoint inhibitors are abridged, while the communicating device and new development of Immune checkpoint inhibitors in cancer therapy-based synergistic therapies with additional immunotherapy, chemotherapy, phototherapy, and radiotherapy in important and clinical educations in the historical 5 years are portrayed and tinted. Lastly, we disapprovingly measure these methods and effort to find their fortes and faintness based on pre-clinical and clinical information.

Keywords: checkpoint, cancer therapy, PD-1, PDL-1, CTLA4, immunosuppressive

Procedia PDF Downloads 133
278 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody

Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer

Abstract:

The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.

Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes

Procedia PDF Downloads 293
277 Chikungunya Virus Infection among Patients with Febrile Illness Attending University of Maiduguri Teaching Hospital, Nigeria

Authors: Abdul-Dahiru El-Yuguda, Saka Saheed Baba, Tawa Monilade Adisa, Mustapha Bala Abubakar

Abstract:

Background: Chikungunya (CHIK) virus, a previously anecdotally described arbovirus, is now assuming a worldwide public health burden. The CHIK virus infection is characterized by potentially life threatening and debilitating arthritis in addition to the high fever, arthralgia, myalgia, headache and rash. Method: Three hundred and seventy (370) serum samples were collected from outpatients with febrile illness attending University of Maiduguri Teaching Hospital, Nigeria, and was used to detect for Chikungunya (CHIK) virus IgG and IgM antibodies using the Enzyme Linked Immunosorbent Assays (ELISAs). Result: Out of the 370 sera tested, 39 (10.5%) were positive for presence of CHIK virus antibodies. A total of 24 (6.5%) tested positive for CHIK virus IgM only while none (0.0%) was positive for presence of CHIK virus IgG only and 15 (4.1%) of the serum samples were positive for both IgG and IgM antibodies. A significant difference (p<0.0001) was observed in the distribution of CHIK virus antibodies in relation to gender. The males had prevalence of 8.5% IgM antibodies as against 4.6% observed in females. On the other hand 4.6% of the females were positive for concurrent CHIK virus IgG and IgM antibodies when compared to a prevalence of 3.4% observed in males. Only the age groups ≤ 60 years and the undisclosed age group were positive for presence of CHIK virus IgG and/or IgM antibodies. No significant difference (p>0.05) was observed in the seasonal prevalence of CHIK virus antibodies among the study subjects Analysis of the prevalence of CHIK virus antibodies in relation to clinical presentation (as observed by Clinicians) of the patients revealed that headache and fever were the most frequently encountered ailments. Conclusion: The CHIK virus IgM and concurrent IgM and IgG antibody prevalence rates of 6.5% and 4.1% observed in this study indicates a current infection and the lack of IgG antibody alone observed shows that the infection is not endemic but sporadic. Recommendation: Further studies should be carried to establish the seasonal prevalence of CHIK virus infection vis-à-vis vector dynamics in the study area. A comprehensive study need to be carried out on the molecular characterization of the CHIK virus circulating in Nigeria with a view to developing CHIK virus vaccine.

Keywords: Chikungunya virus, IgM and IgG antibodies, febrile patients, enzyme linked immunosorbent assay

Procedia PDF Downloads 356
276 Evaluation of Transfusion-Related Acute Lung Injury

Authors: Hossein Barri Ghazani

Abstract:

Transfusion-related acute lung injury is the main reason of transfusion-related death, and it’s assigned to white blood cell reactive antibodies present in the blood product (anti-HLA class I and class II or anti granulocyte antibodies). TRALI may occur in the COVID-19 patients who are treated by convalescent plasma. The rate of TRALI’s reactions is the same in both males and females and can happen in all age groups. TRALI’s occurrence is higher for people who receive plasma from female donors because the parous female donors have multiple HLA antibodies in their plasma. Patients with chronic liver disease have an augmented risk of transfusion-related acute lung injuries from plasma containing blood products like FFP and PRP. The condition of TRALI suddenly starts with a non‐cardiogenic pulmonary Edema, often accompanied by marked systemic hypovolemic and hypotension. The conditions occur during or within a few hours of transfusion. Chest X-ray shows a nodular penetration or bats’ wing pattern of Edema which can be seen in acute respiratory distress syndrome as well. TRALI can occur with any type of blood products and can occur with as little as one unit. The blood donor center should be informed of the suspected TRALI reactions when the symptoms of TRALI are observed. After a review of the clinical data, the donors must be screened for granulocyte and HLA antibodies. The diagnosis and management of TRALI is not simple and is best done with a professional team and a specialty skilled nurse experienced with the upkeep of these patients.

Keywords: TRALI, transfusion-related death, anti-granulocyte antibodies, anti-HLA antibodies, COVID-19

Procedia PDF Downloads 133
275 The Effect of Elapsed Time on the Cardiac Troponin-T Degradation and Its Utility as a Time Since Death Marker in Cases of Death Due to Burn

Authors: Sachil Kumar, Anoop K.Verma, Uma Shankar Singh

Abstract:

It’s extremely important to study postmortem interval in different causes of death since it assists in a great way in making an opinion on the exact cause of death following such incident often times. With diligent knowledge of the interval one could really say as an expert that the cause of death is not feigned hence there is a great need in evaluating such death to have been at the CRIME SCENE before performing an autopsy on such body. The approach described here is based on analyzing the degradation or proteolysis of a cardiac protein in cases of deaths due to burn as a marker of time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (Department of Forensic Medicine and Toxicology), King George’s Medical University, Lucknow India, after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC) for different time periods (~7.30, 18.20, 30.30, 41.20, 41.40, 54.30, 65.20, and 88.40 Hours). The cases included were the subjects of burn without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. As time postmortem progresses the intact cTnT band degrades to fragments that are easily detected by the monoclonal antibodies. A decreasing trend in the level of cTnT (% of intact) was found as the PM hours increased. A significant difference was observed between <15 h and other PM hours (p<0.01). Significant difference in cTnT level (% of intact) was also observed between 16-25 h and 56-65 h & >75 h (p<0.01). Western blot data clearly showed the intact protein at 42 kDa, three major (28 kDa, 30kDa, 10kDa) fragments, three additional minor fragments (12 kDa, 14kDa, and 15 kDa) and formation of low molecular weight fragments. Overall, both PMI and cardiac tissue of burned corpse had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 41.40 Hrs and after it intact protein slowly disappears. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the time postmortem. A strong significant positive correlation was found between cTnT and PM hours (r=0.87, p=0.0001). The regression analysis showed a good variability explained (R2=0.768) The post-mortem Troponin-T fragmentation observed in this study reveals a sequential, time-dependent process with the potential for use as a predictor of PMI in cases of burning.

Keywords: burn, degradation, postmortem interval, troponin-T

Procedia PDF Downloads 411
274 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 94
273 Development of Monoclonal Antibodies against the Acute Hepatopancreatic Necrosis Disease Toxins

Authors: Naveen Kumar B. T., Anuj Tyagi, Niraj Kumar Singh, Visanu Boonyawiwat, Shanthanagouda A. H., Orawan Boodde, Shankar K. M., Prakash Patil, Shubhkaramjeet Kaur

Abstract:

Since 2009, Acute Hepatopancreatic Necrosis Disease (AHPND) outbreaks have increased rapidly, and these have led to the major economic losses to the global shrimp industry. In comparison to other treatments, passive immunity and monoclonal antibody (MAb) based farmer level kit have proved their importance in controlling and treating the diseases in the shrimp industry. In the present study, MAbs were produced against the recombinant PirB protein Vibrio parahaemolyticus strain causing AHPND. Briefly, Balb/C mice were immunized with rPirB at 15 days interval, and antibody titer was determined by ELISA. Spleen cells from mice showing high antibody titer were fused with SP2O myeloma cells for hybridoma production. Among 130 hybridomas, four showed high antibody titer and positive reactivity in an immunoblot assay. In Western blot assay, three out of four MAbs (4C4, 2C2 and 4G3) showed reactivity to rPirB protein. However, in the natural host, only Mab clone 4G3 show strong reactivity (with a strain of V. parahemolyticus causing EMS/AHPND). These clones also showed reactivity with less than 20 kDa proteins in AHPND free V. parahaemolyticus (Thailand stain). Further, on from MAb 4G3 clone, four panels of single cell MAbs clones (G3F5, G3B8, G3H2, and G3D6) were produced of which three showed strong positive reactivity to rPirB protein in the Western blot. These MAbs have potential for controlling and prevention of the AHPND through passive immunity and development of filed level rapid diagnostic kits.

Keywords: shrimp, economic loss, AHPND, MAb

Procedia PDF Downloads 218
272 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase

Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul

Abstract:

Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.

Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase

Procedia PDF Downloads 332
271 'Antibody Exception' under Dispute and Waning Usage: Potential Influence on Patenting Antibodies

Authors: Xiangjun Kong, Dongning Yao, Yuanjia Hu

Abstract:

Therapeutic antibodies have become the most valuable and successful class of biopharmaceutical drugs, with a huge market potential and therapeutic advantages. Antibody patents are, accordingly, extremely important. As the technological limitation of the early stage of this field, the U. S. Patent and Trademark Offices (USPTO) have issued guidelines that suggest an exception for patents claiming a genus of antibodies that bind to a novel antigen, even in the absence of any experimental antibody production. This 'antibody exception' allowed for a broad scope on antibody claims, and led a global trend to patent antibodies without antibodies. Disputes around the pertinent patentability and written description issues remain particularly intense. Yet the validity of such patents had not been overtly challenged until Centocor v. Abbott, which restricted the broad scope of antibody patents and hit the brakes on the 'antibody exception'. The courts tend to uphold the requirement for adequate description of antibodies in the patent specifications, to avoid overreaching antibody claims. Patents following the 'antibody exception' are at risk of being found invalid for inadequately describing what they have claimed. However, the relation between the court and USPTO guidelines remains obscure, and the waning of the 'antibody exception' has led to further disputes around antibody patents. This uncertainty clearly affects patent applications, antibody innovations, and even relevant business performance. This study will give an overview of the emergence, debate, and waning usage of the 'antibody exception' in a number of enlightening cases, attempting to understand the specific concerns and the potential influence of antibody patents. We will then provide some possible strategies for antibody patenting, under the current considerations on the 'antibody exception'.

Keywords: antibody exception, antibody patent, USPTO (U. S. Patent and Trademark Offices) guidelines, written description requirement

Procedia PDF Downloads 122
270 Production of Recombinant VP2 Protein of Canine Parvovirus 2a Using Baculovirus Expression System

Authors: Soo Dong Cho, In-Ohk Ouh, Byeong Sul Kang, Seyeon Park, In-Soo Cho, Jae Young Song

Abstract:

An VP2 gene from the current prevalent CPV (Canine Parvovirus) strain (new CPV-2a) in the Republic of Korea was expressed in a baculovirus expression system. Genomic DNA was extracted from the isolate strain CPV-2a. The recombinant baculovirus, containing the coding sequences of VP2 with the histidine tag at the N-terminus, were generated by using the Bac-to-Bac system. For production of the recombinant VP2 proteins, SF9 cells were transfection into 6 wells. Propagation of recombinant baculoviruses and expression of the VP2 protein were performed in the Sf9 cell line maintained. The proteins were detected to Western blot anlaysis. CPV-2a VP2 was detected by Western blotting the monoclonal antibodies recognized 6x His and the band had a molecular weight of 65 KDa. We demonstrated that recombinant CPV-2a VP2 expression in baculovirus. The recombinant CPV-2a VP2 may able to development of specific diagnostic test and vaccination of against CPV2. This study provides a foundation for application of CPV2 on the development of new CPV2 subunit vaccine.

Keywords: baculovirus, canine parvovirus 2a, Dog, Korea

Procedia PDF Downloads 205
269 The Detection of Antibodies Against Shuni Virus in Cattle From Western Kenya

Authors: Barbra Bhebhe, Melvyn Quan

Abstract:

A serological survey was done to detect antibodies against Shuni virus (SHUV) from cattle in Western Kenya. In Kenya the disease status of SHUV in cattle has never been established. It is a zoonotic virus and even though studies have been carried out as early as the 1960s, little research has been published and SHUV is still not a well-recognised Orthobunyavirus. One hundred serum samples were collected from healthy cattle in Kenya and tested for antibodies against SHUV by a serum neutralization assay. All antibody titre values were greater than 1:160, with most of the samples greater than 1:320. Of the samples tested, 87 % had titres greater than 1:320, 12% had a titre of 1:320 and 2% had a titre of 1:160. Samples were classified as positive if the antibody titre was ≥ 1:10 and negative if < 1:10. This study suggests that cattle are exposed commonly to SHUV, which may be endemic in Kenya.

Keywords: Shuni virus, Orthobunyavuruses, serum neutralization test, cell-culture

Procedia PDF Downloads 41