Search results for: recalcitrant organic compounds
1628 Lc-Ms N-Alkylamide Profiling of an Ethanolic Anacyclus pyrethrum Root Extract
Authors: Vikas Sharma, V. K. Dixit
Abstract:
The roots of Anacyclus pyrethrum DC (AP) (Asteraceae) are frequently used in traditional medicine as Vajikarana Rasayana. An ethanolic extract of root of Anacyclus pyrethrum demonstrated its potential to enhance the sexual behaviour of male rats, with a dose dependent effect on sperm count and androgens concentration. Phytochemical analysis of ethanolic extract of Anacyclus pyrethrum revealed that it is rich in N-alkylamide. This study therefore sought to assess characterization of ethanolic extract of Anacyclus pyrethrum root. Root extract was performed using a gradient reversed phase high performance liquid chromatography/UV/electrospray ionization ion trap mass spectrometry (HPLC/ESI-MS) method on an embedded polar column. MS1 and MS2 fragmentation data were used for identification purposes, while UV was used for quantification. Thirteen N-alkylamides (five N-isobutylamides, three N-methyl isobutylamides, four tyramides, and one 2-phenylethylamide) were detected. Five of them identified as undeca-2E,4E-diene-8,10-diynoic acid N-methyl isobutylamide, tetradeca-2E,4E-diene-8,10-diynoic acid tyramide, deca-2E,4E-dienoic acid N-methyl isobutylamide, tetradeca-2E,4E,XE/Z-trienoic acid tyramide and tetradeca-2E,4E,8Z,10Z-tetraenoic isobutylamide are novel compounds, which have never been identified in Anacyclus pyrethrum.Keywords: Anacyclus pyrethrum (Asteraceae), LC-MS plant profiling, N-alkylamides, pellitorine, anacycline
Procedia PDF Downloads 4041627 Phytochemicals and Photosynthesis of Grape Berry Exocarp and Seed (Vitis vinifera, cv. Alvarinho): Effects of Foliar Kaolin and Irrigation
Authors: Andreia Garrido, Artur Conde, Ana Cunha, Ric De Vos
Abstract:
Climate changes predictions point to increases in abiotic stress for crop plants in Portugal, like pronounced temperature variation and decreased precipitation, which will have negative impact on grapevine physiology and consequently, on grape berry and wine quality. Short-term mitigation strategies have, therefore, been implemented to alleviate the impacts caused by adverse climatic periods. These strategies include foliar application of kaolin, an inert mineral, which has radiation reflection proprieties that decreases stress from excessive heat/radiation absorbed by its leaves, as well as smart irrigation strategies to avoid water stress. However, little is known about the influence of these mitigation measures on grape berries, neither on the photosynthetic activity nor on the photosynthesis-related metabolic profiles of its various tissues. Moreover, the role of fruit photosynthesis on berry quality is poorly understood. The main objective of our work was to assess the effects of kaolin and irrigation treatments on the photosynthetic activity of grape berry tissues (exocarp and seeds) and on their global metabolic profile, also investigating their possible relationship. We therefore collected berries of field-grown plants of the white grape variety Alvarinho from two distinct microclimates, i.e. from clusters exposed to high light (HL, 150 µmol photons m⁻² s⁻¹) and low light (LL, 50 µmol photons m⁻² s⁻¹), from both kaolin and non-kaolin (control) treated plants at three fruit developmental stages (green, véraison and mature). Plant irrigation was applied after harvesting the green berries, which also enabled comparison of véraison and mature berries from irrigated and non-irrigated growth conditions. Photosynthesis was assessed by pulse amplitude modulated chlorophyll fluorescence imaging analysis, and the metabolite profile of both tissues was assessed by complementary metabolomics approaches. Foliar kaolin application resulted in, for instance, an increased photosynthetic activity of the exocarp of LL-grown berries at green developmental stage, as compared to the control non-kaolin treatment, with a concomitant increase in the levels of several lipid-soluble isoprenoids (chlorophylls, carotenoids, and tocopherols). The exocarp of mature berries grown at HL microclimate on kaolin-sprayed non-irrigated plants had higher total sugar levels content than all other treatments, suggesting that foliar application of this mineral results in an increased accumulation of photoassimilates in mature berries. Unbiased liquid chromatography-mass spectrometry-based profiling of semi-polar compounds followed by ASCA (ANOVA simultaneous component analysis) and ANOVA statistical analysis indicated that kaolin had no or inconsistent effect on the flavonoid and phenylpropanoid composition in both seed and exocarp at any developmental stage; in contrast, both microclimate and irrigation influenced the level of several of these compounds depending on berry ripening stage. Overall, our study provides more insight into the effects of mitigation strategies on berry tissue photosynthesis and phytochemistry, under contrasting conditions of cluster light microclimate. We hope that this may contribute to develop sustainable management in vineyards and to maintain grape berries and wines with high quality even at increasing abiotic stress challenges.Keywords: climate change, grape berry tissues, metabolomics, mitigation strategies
Procedia PDF Downloads 1301626 Identifying Metabolic Pathways Associated with Neuroprotection Mediated by Tibolone in Human Astrocytes under an Induced Inflammatory Model
Authors: Daniel Osorio, Janneth Gonzalez, Andres Pinzon
Abstract:
In this work, proteins and metabolic pathways associated with the neuroprotective response mediated by the synthetic neurosteroid tibolone under a palmitate-induced inflammatory model were identified by flux balance analysis (FBA). Three different metabolic scenarios (‘healthy’, ‘inflamed’ and ‘medicated’) were modeled over a gene expression data-driven constructed tissue-specific metabolic reconstruction of mature astrocytes. Astrocyte reconstruction was built, validated and constrained using three open source software packages (‘minval’, ‘g2f’ and ‘exp2flux’) released through the Comprehensive R Archive Network repositories during the development of this work. From our analysis, we predict that tibolone executes their neuroprotective effects through a reduction of neurotoxicity mediated by L-glutamate in astrocytes, inducing the activation several metabolic pathways with neuroprotective actions associated such as taurine metabolism, gluconeogenesis, calcium and the Peroxisome Proliferator Activated Receptor signaling pathways. Also, we found a tibolone associated increase in growth rate probably in concordance with previously reported side effects of steroid compounds in other human cell types.Keywords: astrocytes, flux balance analysis, genome scale metabolic reconstruction, inflammation, neuroprotection, tibolone
Procedia PDF Downloads 2301625 Antimicrobial Activity of the Natural Products Derived from Phyllanthus Emblica and Gracilaria Fisheri Against Staphylococcus Aureus
Authors: Woraprat Amnuaychaichana
Abstract:
Several medicinal plants are well known to contain active constituents such as flavonoids and phenolic compounds with are plausible candidates for therapeutic purposes. An infectious disease caused by microbial infection is the leading cause of death. Antibiotics are typically used to eradicate these microbes, but recent evidence indicates that they are developing antibiotic-resistant effects. This study focused on antimicrobial activities of Phyllanthus emblica and Gracilaria fisheri using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. The extracts were screened against Staphylococcus aureus. Five concentrations of plant extracts were used to determine the minimum inhibitory concentration (MIC) by 2-fold dilution of plant extract. The results indicated that G. fisheri extract gave the maximum zones of inhibition of 11.7 mm against S. aureus while P. emblica showed no effects. The MIC values of G. fisheri extract against S. aureus was 500 µg/ml. To summarise, G. fisheri extracts demonstrated high efficacy of antibacterial activity against Gram-positive S. aureus, which may pave the way for developing a formulation containing this plant. G. fisheri extract should be subjected to additional investigation in order to determine the mechanism of action of its antimicrobial activity.Keywords: antibacterial activity, Staphylococcus aureus, gracilaria fishery, Phyllanthus emblica
Procedia PDF Downloads 1921624 Mechanical Characterization and Impact Study on the Environment of Raw Sediments and Sediments Dehydrated by Addition of Polymer
Authors: A. Kasmi, N. E. Abriak, M. Benzerzour, I. Shahrour
Abstract:
Large volumes of river sediments are dredged each year in Europe in order to maintain harbour activities and prevent floods. The management of this sediment has become increasingly complex. Several European projects were implemented to find environmentally sound solutions for these materials. The main objective of this study is to show the ability of river sediment to be used in road. Since sediments contain a high amount of water, then a dehydrating treatment by addition of the flocculation aid has been used. Firstly, a lot of physical characteristics are measured and discussed for a better identification of the raw sediment and this dehydrated sediment by addition the flocculation aid. The identified parameters are, for example, the initial water content, the density, the organic matter content, the grain size distribution, the liquid limit and plastic limit and geotechnical parameters. The environmental impacts of the used material were evaluated. The results obtained show that there is a slight change on the physical-chemical and geotechnical characteristics of sediment after dehydration by the addition of polymer. However, these sediments cannot be used in road construction.Keywords: rive sediment, dehydration, flocculation aid or polymer, characteristics, treatments, valorisation, road construction
Procedia PDF Downloads 3821623 Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth
Authors: M. Mana, M. S. Ouali, L. C. de Menorval
Abstract:
A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100°C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second order kinetic model and the Weber & Morris, intra-particle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of the treated spent bleaching earth.Keywords: basic dyes, isotherms, sorption, spent bleaching earth
Procedia PDF Downloads 2521622 Texture Characteristics and Depositional Environment of the Lower Mahi River Sediment, Mainland Gujarat, India
Authors: Shazi Farooqui, Anupam Sharma
Abstract:
The Mahi River (~600km long) is an important west flowing the river of Central India. It originates in Madhya Pradesh and starts flowing in NW direction and enters into the state of Rajasthan. It flows across southern Rajasthan and then enters into Gujarat and finally debouches in the Gulf of Cambay. In Gujarat state, it flows through all four geomorphic zones i.e. eastern upland zone, shallow buried piedmont zone, alluvial zone and coastal zone. In lower reaches and particularly when it is flowing under the coastal regime, it provides an opportunity to study – 1. Land–Sea interaction and role of relative sea level changes, 2. Coastal/estuarine geological process, 3. Landscape evolution in marginal areas and so on. The Late Quaternary deposits of Mainland Gujarat is appreciably studied by Chamyal and his group of MS University of Baroda, and they have established that the 30-35m thick sediment package of the Mainland Gujarat is comprised of marine, fluvial and aeolian sediments. It is also established that in the estuarine zone, the upper few meter thick sediments package is of marine nature. However, its thickness, characters and the depositional environment including the role of climate and tectonics is still not clearly defined. To understand few aspects of the above mentioned, in the present study, a 17m subsurface sediment core has been retrieved from the estuarine zone of Mahi river basin. The Multiproxy studies which include the textural analysis (grain size), Loss on ignition (LOI), Bulk and clay mineralogy and geochemical studies have been carried out. In the entire sedimentary sequence, the grain size largely varies from coarse sand to clay; however, a solitary gravel bed is also noticed. The lower part (depth 9-17m), is mainly comprised of sub equal proportion of sand and silt. The sediments mainly have bimodal and leptokurtic distribution and deposited in alternate sand-silt package, probably indicating flood deposits. Relatively low moisture (1.8%) and organic carbon (2.4%) with increased carbonate values (12%) indicate that conditions must have to remain oxidizing. The middle part (depth 9–6m) has a 1m thick gravel bed at the bottom and overlain by coarse sand to very fine sand showing fining upward sequence. The presence of gravel bed suggests some kind of tectonic activity resulting into change in base level or enhanced precipitation in the catchment region. The upper part (depth 6–0m; top part of sequence) mainly comprised of fine sand to silt size grains (with appreciable clay content). The sediment of this part is Unimodal and very leptokurtic in nature suggesting wave and winnowing process and deposited in low energy suspension environment. This part has relatively high moisture (2.1%) and organic carbon (2.7%) with decreased carbonate content (4.2%) indicating change in the depositional environment probably under estuarine conditions. The presence of chlorite along with smectite clay mineral further supports the significant marine contribution in the formation of upper part of the sequence.Keywords: grain size, statistical analysis, clay minerals, late quaternary, LOI
Procedia PDF Downloads 1811621 Thermo-Elastic and Self-Healing Polyacrylamide: 2D Polymer Composite Hydrogels for Water Shutoff Treatment
Authors: Edreese H. Alsharaeh, Feven Mattews Michael, Ayman Almohsin
Abstract:
Self-healing hydrogels have many advantages since they can resist various types of stresses, including tension, compression, and shear, making them attractive for various applications. In this study, thermo-elastic and self-healing polymer composite hydrogels were prepared from polyacrylamide (PAM) and 2D fillers using in-situ method. In addition, the PAM and fillers were prepared in presence of organic crosslinkers, i.e., hydroquinone (HQ) and hexamethylenediamine (HMT). The swelling behavior of the prepared hydrogels was studied by hydrating the dried hydrogels. The thermal and rheological properties of the prepared hydrogels were evaluated before and after swelling study using thermogravimetric analysis, differential scanning calorimetric technique and dynamic mechanical analysis. From the results obtained, incorporating fillers into the PAM matrix enhanced the swelling degree of the hydrogels with satisfactory mechanical properties, attaining up to 77% self-healing efficiency compared to the neat-PAM (i.e., 29%). This, in turn, indicates addition of 2D fillers improved self-healing properties of the polymer hydrogel, thus, making the prepared hydrogels applicable for water shutoff treatments under high temperature.Keywords: polymer hydrogels, 2D fillers, elastic self-healing hydrogels, water shutoff, swelling properties
Procedia PDF Downloads 1491620 The Effect of Solid Wastes Disposal at Amokpala Dump Site in Orumba North Local Government Area, Anambra State
Authors: Nwanneka Mmonwuba
Abstract:
Solid waste disposal to the environment was investigated by analyzing the quality characteristics of waste, air quality, and heavy metal concentration in the soil. The characteristics of waste were analyzed by enumerating the number of houses, hostels, hotels, markets, schools, and industries with the type of waste being discharged or deposited into the dump site. The percentage of waste was estimated with organic ranking first for both wet and dry seasons, 54% and 44%, respectively. The ambient air quality was analyzed using the crown gas monitor analyzer. The analysis showed that the mean concentration of NO₂, SO₂, and Co is 0.74, 0.37, and 47.35 ppm for the wet season and 0.47, 0.35, and 37.65 ppm for the dry season, respectively, and do not conform with the USEPA standard. The chemical analysis of the groundwater sample indicates alkalinity ranging from 7.38 to 9.11. the heavy metals concentration in the soil of cadmium, iron, copper, calcium, and potassium with 0.053, 0.722, 0227, 21.3, and 9.019, respectively, obtained from 0.3 m at the subsurface failed to conform to the NRC (2013) standard. Iron consent in the soil can be corrected using ascorbic acid and soda ash. The permanent reduction of effects is to try relocating people who live very close to the dumpsite, or the dumpsite should be sited elsewhere and replaced with a sanitary landfill.Keywords: solid waste, groundwater, disposal, dumpsite
Procedia PDF Downloads 561619 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates
Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski
Abstract:
The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.Keywords: microwave radiation, biogas, methane fermentation, biomass
Procedia PDF Downloads 5361618 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets
Procedia PDF Downloads 3851617 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies
Authors: Ariesny Vera, Rodrigo Montecinos
Abstract:
The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.
Procedia PDF Downloads 791616 Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor
Authors: Mabtho Moreroa-Monyelo, Grace Ijoma, Rosina Nkuna, Tonderayi Matambo
Abstract:
A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria.Keywords: biodegradation, fischer-tropsch wastewater, metagenomics, moving bed biofilm reactor
Procedia PDF Downloads 1661615 Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron
Authors: Pawan Kumar Sharma, Sudhakar Dwivedi, R. K. Arora
Abstract:
Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06.Keywords: saffron, internal rate of return, cost efficiency, stochastic frontier model
Procedia PDF Downloads 1571614 Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306.Keywords: androstane derivatives, anticancer activity, chemometrics, molecular descriptors
Procedia PDF Downloads 3681613 A Study on the Computation of Gourava Indices for Poly-L Lysine Dendrimer and Its Biomedical Applications
Authors: M. Helen
Abstract:
Chemical graph serves as a convenient model for any real or abstract chemical system. Dendrimers are novel three dimensional hyper branched globular nanopolymeric architectures. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Dendrimers like poly L lysine (PLL), poly-propylene imine (PPI) and poly-amidoamine (PAMAM), etc., are used as gene carrier in drug delivery system because of their chemical characteristics. These characteristics of chemical compounds are analysed using topological indices (invariants under graph isomorphism) such as Wiener index, Zagreb index, etc., Prof. V. R. Kulli motivated by the application of Zagreb indices in finding the total π energy and derived Gourava indices which is an improved version over Zagreb indices. In this paper, we study the structure of PLL-Dendrimer that has the following applications: reduction in toxicity, colon delivery, and topical delivery. Also, we determine first and second Gourava indices, first and second hyper Gourava indices, product and sum connectivity Gourava indices for PLL-Dendrimer. Gourava Indices have found applications in Quantitative Structure-Property Relationship (QSPR)/ Quantitative Structure-Activity Relationship (QSAR) studies.Keywords: connectivity Gourava indices, dendrimer, Gourava indices, hyper GouravaG indices
Procedia PDF Downloads 1421612 Standard Gibbs Energy of Formation and Entropy of Lanthanide-Iron Oxides of Garnet Crystal Structure
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity and by using the semi-empirical method for calculation of ΔH298.15 (formation). Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: calorimetry, entropy, heat capacity, Gibbs energy of formation, rare earth iron garnets
Procedia PDF Downloads 3581611 Promoted Thermoelectric Properties of Polymers through Controlled Tie-Chain Incorporation
Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus
Abstract:
We have demonstrated a model system for the controlled incorporation of tie-chains into semicrystalline conjugated polymers using blends of different molecular weights that leads to a significant increase in electrical conductivity. Through careful assessment of the microstructural evolution upon tie chain incorporation we have demonstrated that no major changes in phase morphology or structural order in the crystalline domains occur and that the observed enhancement in electrical conductivity can only be explained consistently by tie chains facilitating the transport across grain boundaries between the crystalline domains. Here we studied the thermoelectric properties of aligned, ion exchange-doped ribbon phase PBTTT with blends of different molecular weight components. We demonstrate that in blended films higher electrical conductivities (up to 4810.1 S/cm), Seebeck coefficients and thermoelectric power factors of up to 172.6 μW m-1 K-2 can be achieved than in films with single component molecular weights. We investigate the underpinning thermoelectric transport physics, including structural and spectroscopic characterization, to better understand how controlled tie chain incorporation can be used to enhance the thermoelectric performance of aligned conjugated polymers.Keywords: organic electronics, thermoelectrics, conjugated polymers, tie chain
Procedia PDF Downloads 701610 Preliminary Studies of MWCNT/PVDF Polymer Composites
Authors: Esther Lorrayne M. Pereira, Adriana Souza M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Clascídia A. Furtado, Luiz O. Faria
Abstract:
The combination of multi–walled carbon nanotubes (MWCNTs) with polymers offers an attractive route to reinforce the macromolecular compounds as well as the introduction of new properties based on morphological modifications or electronic interactions between the two constituents. As they are only a few nanometers in dimension, it offers ultra-large interfacial area per volume between the nano-element and polymer matrix. Nevertheless, the use of MWCNTs as a rough material in different applications has been largely limited by their poor processability, insolubility, and infusibility. Studies concerning the nanofiller reinforced polymer composites are justified in an attempt to overcome these limitations. This work presents one preliminary study of MWCNTs dispersion into the PVDF homopolymer. For preparation, the composite components were diluted in n,n-dimethylacetamide (DMAc) with mechanical agitation assistance. After complete dilution, followed by slow evaporation of the solvent at 60°C, the samples were dried. Films of about 80 μm were obtained. FTIR and UV-Vis spectroscopic techniques were used to characterize the nanocomposites. The appearance of absorption bands in the FTIR spectra of nanofilled samples, when compared to the spectrum of pristine PVDF samples, are discussed and compared with the UV-Vis measurements.Keywords: composites materials, FTIR, MWNTs, PVDF, UV-vis
Procedia PDF Downloads 4501609 Heavy Metals Concentration in Sediments Along the Ports, Samoa
Authors: T. Imo, F. Latū, S. Aloi, J. Leung-Wai, V. Vaurasi, P. Amosa, M. A. Sheikh
Abstract:
Contamination of heavy metals in coral reefs and coastal areas is a serious ecotoxicological and environmental problem due to direct runoff from anthropogenic wastes, commercial vessels, and discharge from industrial effluents. In Samoa, the information on the ecotoxicological impact of heavy metals on sediments is limited. This study presents baseline data on the concentration and distribution of heavy metals in sediments collected along the commercial and fishing ports in Samoa. Surface sediment samples were collected within the months of August-October 2013 from the 5 sites along the 2 ports. Sieved sample fractions were used for the evaluation of sediment physicochemical parameters namely pH, conductivity, organic matter, and bicarbonates of calcium. Heavy metal (Cu, Pb) analysis was achieved by flame atomic absorption spectrometry. Two heavy metals (Cu, Pb) were detected from each port with some concentration below the WHO permissible maximum concentration of environment quality standard. The results obtained from this study advocate for further studies regarding emerging threats of heavy metals on the vital marine resources which have significant importance to the livelihood of coastal societies, particularly Small Island States including Samoa.Keywords: coastal environment, heavy metals, pollution, sediments
Procedia PDF Downloads 3331608 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment
Authors: Iryna P. Dzieciuch, Michael D. Putman
Abstract:
Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin
Procedia PDF Downloads 1651607 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry
Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim
Abstract:
An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant
Procedia PDF Downloads 3151606 Evaluation of Antioxidant Activities of Rice Paddy Herb (Limnophila aromatica (Lam.) Merr.)
Authors: Rutanachai Thaipratum
Abstract:
Free radicals are atoms or molecules with unpaired electrons. Many diseases are caused by free radicals. Normally, free radical formation is controlled naturally by various beneficial compounds known as antioxidants. Several analytical methods have been used for qualitative and quantitative determination of antioxidants, and each has its own specificity. This project aimed to evaluate antioxidant activity of ethanolic and aqueous extracts from the rice paddy herb (Limnophila aromatica (Lam.) Merr.) measured by DPPH and Hydroxyl radical scavenging method. The results showed that averaged antioxidant activity measured in ethanolic extract (µmol Ascorbic acid equivalent/g fresh mass) were 67.09± 4.99 and 15.55±4.82 as determined by DPPH and Hydroxyl radical scavenging activity assays, respectively. Averaged antioxidant activity measured in aqueous extract (µmol Ascorbic acid equivalent/g fresh mass) were 21.08±1.25 and 10.14±3.94 as determined by DPPH and Hydroxyl radical scavenging activity assays respectively.Keywords: free radical, antioxidant, rice paddy herb, Limnophila aromatica (Lam.) Merr.
Procedia PDF Downloads 3511605 Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films
Authors: Reena Panchal, Maunik Jani, S. M. Vyas, G. R. Pandya
Abstract:
Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations.Keywords: thin films, band gap, film thickness, optical study, size effect
Procedia PDF Downloads 241604 Cardioprotective Effect of Oleanolic Acid and Urosolic Acid against Doxorubicin-Induced Cardiotoxicity in Rats
Authors: Sameer N. Goyal, Chandragauda R. Patil
Abstract:
Oleanolic acid (3/3-hydroxy-olea-12-en-28-oic acid) and its isomer, Ursolic acid (38-hydroxy-urs-12-en-28-oic acid) are triterpenoids compounds which exist widely in plant kingdom in the free acid form or as glycosidic triterpenoids saponins. The aim of the study is to evaluate intravenously administered oleanolic acid and ursolic acid in doxorubicin induced cardiotoxicity. Cardiotoxicity was induced in albino wistar rat with single intravenous injection of doxorubicin at dose of 67.75mg/kg i.v for 48 hrs at 12 hrs interval following doxorubicin administration in the same model cardioprotective effect of amifostine (90 mg/kg i.v, single dose prior 30 min before doxorubicin administration) was evaluated as standard treatment. Induction of cardiotoxicity was confirmed by rise in cardiac markers in serum such as CK–MB, LDH and also by electrocardiographically. The doxorubicin treated group significantly increased in QT interval, serum CK-MB, serum LDH, SGOT, SGPT and antioxidant parameter. Both the treatment group showed significant protective effect on Hemodynamic, electrocardiographic, biochemical, and antioxidant parameters. The oleanolic acid showed slight protective effect in histological lesions in doxorubicin induced cardiotoxicity. Hence, the results indicate that Oleanolic acid has more cardioprotective potential than ursolic acid against doxorubicin induced cardiotoxicity in rats.Keywords: cardioprotection, doxorubicin, oleanolic acid, ursolic acid
Procedia PDF Downloads 5331603 Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films
Authors: Eden G. Mariquit, Winarto Kurniawan, Masahiro Miyauchi, Hirofumi Hinode
Abstract:
This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light.Keywords: photocatalysis, surface hydrophilicity, TiO2 thin films, surfactant
Procedia PDF Downloads 4261602 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater
Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio
Abstract:
Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.Keywords: contamination, water research, biodigester, nutrients
Procedia PDF Downloads 671601 Eradication of Gram-Positive Bacteria by Photosensitizers Immobilized in Polymers
Authors: Marina Nisnevitch, Anton Valkov, Faina Nakonechny, Kate Adar Raik, Yamit Mualem
Abstract:
Photosensitizers are dye compounds belonging to various chemical groups that in all the cases have a developed structure of conjugated double bonds. Under illumination with visible light, the photosensitizers are excited and transfer the absorbed energy to the oxygen dissolved in an aqueous phase, leading to production of a reactive oxygen species which cause irreversible damage to bacterial cells. When immobilized onto a solid phase, photosensitizers preserve their antibacterial properties. In the present study, photosensitizers were immobilized in polyethylene or propylene and tested for antimicrobial activity against Gram-positive S. aureus, S. epidermidis and Streptococcus sp. For this purpose, water-soluble photosensitizers, Rose Bengal sodium salt, and methylene blue as well as water-insoluble hematoporphyrin and Rose Bengal lactone, were immobilized by dissolution in melted polymers to yield 3 mm diameter rods and 3-5 mm beads. All four photosensitizers were found to be effective in the eradication of Gram-positive bacteria under illumination by a white luminescent lamp or sunlight. The immobilized photosensitizers can be applied for continuous water disinfection; they can be easily removed at the end of the treatment and reused.Keywords: antimicrobial polymers, gram-positive bacteria, immobilization of photosensitizers, photodynamic antibacterial activity
Procedia PDF Downloads 2461600 Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride
Authors: Görkem Ülkü, Nesrin Köken, Esin A. Güvel, Nilgün Kızılcan
Abstract:
Ethoxylated nonyl phenols (ENP) and ceric ammonium nitrate redox systems have been used for the polymerization of vinyl and acrylic monomers. In that case, ENP acted as an organic reducing agent in the presence of Ce (IV) salt and a radical was formed. The polymers obtained with that redox system contained ENP chain ends because the radicals are formed on the reducing molecules. Similar copolymer synthesis has been reported using poly(ethylene oxide) instead of its nonyl phenol terminated derivative, ENP. However, copolymers of poly(ethylene oxide) and conducting polymers synthesized by ferric ions were produced in two steps. Firstly, heteroatoms (pyrrole, thiophene etc.) were attached to the poly(ethylene oxide) chains then copolymerization with heterocyclic monomers was carried out. In this work, ethoxylated nonylphenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENP-ThC). Then, copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant.Keywords: end capped polymer, ethoxylated nonylphenol, heterophase polymerization, polypyrrole
Procedia PDF Downloads 4121599 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger
Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du
Abstract:
Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis
Procedia PDF Downloads 561