Search results for: surface whiteness
3946 Microbiological Analysis of Polluted Water with Pesticides in Ben Mhidi (Northeastern of Algeria)
Authors: Aimeurnadjette, Hammoudi Abd Erahmen, Bordjibaouahiba
Abstract:
For many years, the pesticides used in agriculture have been responsible for environmental degradation, particularly noticeable in the areas of intensive agriculture, particularly through contamination of surface and groundwater. Our study was conducted to isolate and identify the microflora of water polluted by pesticides in an area with an agricultural vocation (Ben M'Hidi) subject to the pesticide effect for several years. Isolated fungal strains were identified based on the morphology of their vegetative and reproductive apparatus. The micromycètes were obtained; they belong mainly to the genera Aspergillus, Penicillium and Trichoderma. Furthermore, most bacterial strains characterized in this work, are that of the genus Aeromonas, Pseudomonas that are widely represented in the study of the biodegradation of pesticides.Keywords: isolated, strains, polluted, pesticides
Procedia PDF Downloads 953945 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach
Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose
Abstract:
In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite
Procedia PDF Downloads 4493944 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 4383943 Carbon Capture: Growth and Development of Membranes in Gas Sequestration
Authors: Sreevalli Bokka
Abstract:
Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented.Keywords: membranes, filtration, separations, polymers, carbon capture
Procedia PDF Downloads 703942 Characterization of an Almond Shell Composite Based on PHBH
Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart
Abstract:
The utilization of almond crop by-products to obtain PHBH-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of OLA 8 as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.Keywords: almond shell, PHBH, composites, compatibilization
Procedia PDF Downloads 1053941 A Nanoindentation Study of Thin Film Prepared by Physical Vapor Deposition
Authors: Dhiflaoui Hafedh, Khlifi Kaouther, Ben Cheikh Larbi Ahmed
Abstract:
Monolayer and multilayer coatings of CrN and AlCrN deposited on 100Cr6 (AISI 52100) substrate by PVD magnetron sputtering system. The micro structures of the coatings were characterized using atomic force microscopy (AFM). The AFM analysis revealed the presence of domes and craters which are uniformly distributed over all surfaces of the various layers. Nano indentation measurement of CrN coating showed maximum hardness (H) and modulus (E) of 14 GPa and 240 GPa, respectively. The measured H and E values of AlCrN coatings were found to be 30 GPa and 382 GPa, respectively. The improved hardness in both the coatings was attributed mainly to a reduction in crystallite size and decrease in surface roughness. The incorporation of Al into the CrN coatings has improved both hardness and Young’s modulus.Keywords: CrN, AlCrN coatings, hardness, nanoindentation
Procedia PDF Downloads 5603940 ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression
Authors: Roberto Coppo, Francesca Orso, Daniela Dettori, Elena Quaglino, Lei Nie, Mehran M. Sadeghi, Daniela Taverna
Abstract:
Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation.Keywords: melanoma, tumor microenvironment, extravasation, cell surface molecules
Procedia PDF Downloads 3373939 Assessment of Surface Water Quality in Belarus
Authors: Anastasiya Vouchak, Aliaksandr Volchak
Abstract:
Belarus is not short of water. However, there is a problem of water quality. Its pollution has both natural and man-made origin. This research is based on data from State Water Cadastre of the Republic of Belarus registered from 1994 to 2014. We analyzed changes in such hydro-chemical criteria as concentration of ammonium ions, suspended matter, dissolved oxygen, oil-products, nitrites, phosphates in water, dichromate value, water impurity index, 5-day biochemical oxygen demand (BOD). Pollution of water with ammonium ions was observed in Belarus rivers of the Western Dvina, Polota, Schara, Usha, Muhavets, Berzina, Plissa, Svisloch, Pripiat, Yaselda in 2006-2014. The threshold limit value (TLV) was 1.5-3 times as much. Concentration of ammonia in the Berezina exceeded 3 – 5 times the TLVs in 2006-2010. Maximum excess of TLV was registered in the Svisloch (10 km downstream of Minsk) in 2006-2007. It was over 4 mg/dm³ whereas the norm is 0.39 mg/dm³. In 1997 there were ammonia pollution spots in the Dnieper, the Berezina, and the Svisloch Rivers. Since 2006 we have observed pollution spots in the Neman, Ross, Vilia, Sozh, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Dichromate value exceeds the TLVs in 40% cases. The most polluted waters are the Muhavets, Berezina, Pripiat, Yaselda, Gorin Rivers, the Vileyka and Soligorsk reservoirs. The Western Dvina, Neman, Viliya, Schara, Svisloch, and Plissa Rivers are less polluted. The Dnieper is the cleanest in this respect. In terms of BOD, water is polluted in the Neman, Muhavets, Svisloch, Yaselda, Gorin Rivers, the Osipovichi, Zaslavl, and Soligorsk reservoirs. The Western Dvina, Polota, Sozh, Iputs Rivers and Lake Naroch are not polluted in this respect. This criterion has been decreasing in 33 out of 42 cases. The least suspended matter is in the Berezina, Sozh, Iputs Rivers and Lake Naroch. The muddiest water is in the Neman, Usha, Svisloch, Pripyat, Yaselda Rivers, the Osipovichi and Soligorsk reservoirs. Water impurity index shows reduction of this criterion at all gauge stations. Multi-year average values predominantly (66.6%) correspond to the third class of water quality, i.e. moderately polluted. They include the Western Dvina, Ross, Usha, Muhavets, Dnieper, Berezina, Plissa, Iputs, Pripyat, Yaselda, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Water in the Svisloch River downstream of Minsk is of the forth quality class, i.e. most polluted. In the rest cases (33.3%) water is relatively clean. They include the Lidea, Schara, Viliya, Sozh Rivers, Lake Lukoml, Lake Naroch, Vileyka and Zaslavl reservoirs. Multi-year average values range from 7.0 to 9.5 mg О₂/dm³. The Yaselda has the least value - 6.7 mg О₂/dm³. A shortage of dissolved oxygen was found in the Berezina (2010), the Yaselda (2007), the Plissa (2011-2014), the Soligorsk reservoir (1996). Contamination of water with oil-products was observed everywhere in 1994-1999. Some spots were found in the Western Dvina, Vilia, Usha, Dnieper in 2003-2006, in the Svisloch in 2002-2012. We are observing gradual decrease of oil pollutants in surface water. The quality of 67 % surface water is referred to as moderately polluted.Keywords: belarus, hydro-chemical criteria, water pollution, water quality
Procedia PDF Downloads 1493938 Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane
Authors: F. Pires, V. Geraldo, O. N. Oliveira Jr., M. Raposo
Abstract:
Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems.Keywords: catechins, lipid membrane, anticancer agent, molecular interactions
Procedia PDF Downloads 2353937 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis
Authors: Sarai Guerrero, Lijia Liu
Abstract:
Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate
Procedia PDF Downloads 1343936 Structure-Phase States of Al-Si Alloy After Electron-Beam Treatment and Multicycle Fatigue
Authors: Krestina V. Alsaraeva, Victor E. Gromov, Sergey V. Konovalov, Anna A. Atroshkina
Abstract:
Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increase in fatigue life of the material has been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed.Keywords: Al-19.4Si alloy, high intensive electron beam, multicycle fatigue, structure
Procedia PDF Downloads 5563935 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs
Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry
Abstract:
In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD
Procedia PDF Downloads 2013934 Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment
Authors: Safa Ladhari, Alireza Saidi, Phuong Nguyen-Tri
Abstract:
During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method.Keywords: protective equipment, antibacterial textile materials, biodegradable polymer, electrospinning, hybrid antibacterial nanoparticles
Procedia PDF Downloads 823933 In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin
Authors: Emma R. Arakelova, Stepan G. Grigoryan, Flora G. Arsenyan, Nelli S. Babayan, Ruzanna M. Grigoryan, Natalia K. Sarkisyan
Abstract:
Novel nanosize zinc oxide composites of doxorubicin obtained by deposition of 180 nm thick zinc oxide film on the drug surface using DC-magnetron sputtering of a zinc target in the form of gels (PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO) were studied for drug delivery applications. The cancer specificity was revealed both in in vitro and in vivo models. The cytotoxicity of the test compounds was analyzed against human cancer (HeLa) and normal (MRC5) cell lines using MTT colorimetric cell viability assay. IC50 values were determined and compared to reveal the cancer specificity of the test samples. The mechanistic study of the most active compound was investigated using Flow cytometry analyzing of the DNA content after PI (propidium iodide) staining. Data were analyzed with Tree Star FlowJo software using cell cycle analysis Dean-Jett-Fox module. The in vivo anticancer activity estimation experiments were carried out on mice with inoculated ascitic Ehrlich’s carcinoma at intraperitoneal introduction of doxorubicin and its zinc oxide compositions. It was shown that the nanosize zinc oxide film deposition on the drug surface leads to the selective anticancer activity of composites at the cellular level with the range of selectivity index (SI) from 4 (Starch+NaCMC+Dox+ZnO) to 200 (PEO(gel)+Dox+ZnO) which is higher than that of free Dox (SI = 56). The significant increase in vivo antitumor activity (by a factor of 2-2.5) and decrease of general toxicity of zinc oxide compositions of doxorubicin in the form of the above mentioned gels compared to free doxorubicin were shown on the model of inoculated Ehrlich's ascitic carcinoma. Mechanistic studies of anticancer activity revealed the cytostatic effect based on the high level of DNA biosynthesis inhibition at considerable low concentrations of zinc oxide compositions of doxorubicin. The results of studies in vitro and in vivo behavior of PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO composites confirm the high potential of the nanosize zinc oxide composites as a vector delivery system for future application in cancer chemotherapy.Keywords: anticancer activity, cancer specificity, doxorubicin, zinc oxide
Procedia PDF Downloads 4133932 Fabrication and Characterisation of Additive Manufactured Ti-6Al-4V Parts by Laser Powder Bed Fusion Technique
Authors: Norica Godja, Andreas Schindel, Luka Payrits, Zsolt Pasztor, Bálint Hegedüs, Petr Homola, Jan Horňas, Jiří Běhal, Roman Ruzek, Martin Holzleitner, Sascha Senck
Abstract:
In order to reduce fuel consumption and CO₂ emissions in the aviation sector, innovative solutions are being sought to reduce the weight of aircraft, including additive manufacturing (AM). Of particular importance are the excellent mechanical properties that are required for aircraft structures. Ti6Al4V alloys, with their high mechanical properties in relation to weight, can reduce the weight of aircraft structures compared to structures made of steel and aluminium. Currently, conventional processes such as casting and CNC machining are used to obtain the desired structures, resulting in high raw material removal, which in turn leads to higher costs and impacts the environment. Additive manufacturing (AM) offers advantages in terms of weight, lead time, design, and functionality and enables the realisation of alternative geometric shapes with high mechanical properties. However, there are currently technological shortcomings that have led to AM not being approved for structural components with high safety requirements. An assessment of damage tolerance for AM parts is required, and quality control needs to be improved. Pores and other defects cannot be completely avoided at present, but they should be kept to a minimum during manufacture. The mechanical properties of the manufactured parts can be further improved by various treatments. The influence of different treatment methods (heat treatment, CNC milling, electropolishing, chemical polishing) and operating parameters were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and measurements with a focused ion beam (FIB), taking into account surface roughness, possible anomalies in the chemical composition of the surface and possible cracks. The results of the characterisation of the constructed and treated samples are discussed and presented in this paper. These results were generated within the framework of the 3TANIUM project, which is financed by EU with the contract number 101007830.Keywords: Ti6Al4V alloys, laser powder bed fusion, damage tolerance, heat treatment, electropolishing, potential cracking
Procedia PDF Downloads 863931 Water Purification By Novel Nanocomposite Membrane
Authors: E. S. Johal, M. S. Saini, M. K. Jha
Abstract:
Currently, 1.1 billion people are at risk due to lack of clean water and about 35 % of people in the developed world die from water related problem. To alleviate these problems water purification technology requires new approaches for effective management and conservation of water resources. Electrospun nanofibres membrane has a potential for water purification due to its high large surface area and good mechanical strength. In the present study PAMAM dendrimers composite nynlon-6 nanofibres membrane was prepared by crosslinking method using Glutaraldehyde. Further, the efficacy of the modified membrane can be renewed by mere exposure of the saturated membrane with the solution having acidic pH. The modified membrane can be used as an effective tool for water purification.Keywords: dendrimer, nanofibers, nanocomposite membrane, water purification
Procedia PDF Downloads 3573930 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA
Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata
Abstract:
We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time
Procedia PDF Downloads 5583929 Facile Fabrication of Nickel/Zinc Oxide Hollow Spheres Nanostructure and Photodegradation of Congo Red
Authors: Seyed Mohsen Mousavi, Ali Reza Mahjoub, Behjat Afshari
Abstract:
In this work, Nickel/Zinc Oxide hollow spherical structures with high surface area using the template Fructose was prepared by the hydrothermal method using a ultrasonic bath at room temperature was produced and were identified by FTIR, XRD, FE-SEM. The photocatalytic activity of synthesized hollow spherical Nickel/Zinc Oxide was studied in the destruction of Congo red as Azo dye. The results showed that the photocatalytic activity of Nickel/ Zinc Oxide hollow spherical nanostructures is improved compared with zinc oxide hollow sphere and other morphologies.Keywords: azo dye, hollow spheres, photocatalyst, nickel/zinc oxide
Procedia PDF Downloads 6383928 Influence of Rotation on Rayleigh-Type Wave in Piezoelectric Plate
Authors: Soniya Chaudhary, Sanjeev Sahu
Abstract:
Propagation of Rayleigh-type waves in a rotating piezoelectric plate is investigated. The materials are assumed to be transversely isotropic crystals. The frequency equation have been derived for electrically open and short cases. Effect of rotation and piezoelectricity have been shown. It is also found that piezoelectric material properties have an important effect on Rayleigh wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezoelectric materials also in SAW devices.Keywords: rotation, frequency equation, piezoelectricity, rayleigh-type wave
Procedia PDF Downloads 3143927 Acetic Acid Adsorption and Decomposition on Pt(111): Comparisons to Ni(111)
Authors: Lotanna Ezeonu, Jason P. Robbins, Ziyu Tang, Xiaofang Yang, Bruce E. Koel, Simon G. Podkolzin
Abstract:
The interaction of organic molecules with metal surfaces is of interest in numerous technological applications, such as catalysis, bone replacement, and biosensors. Acetic acid is one of the main products of bio-oils produced from the pyrolysis of hemicellulosic feedstocks. However, their high oxygen content makes them unsuitable for use as fuels. Hydrodeoxygenation is a proven technique for catalytic deoxygenation of bio-oils. An understanding of the energetics and control of the bond-breaking sequences of biomass-derived oxygenates on metal surfaces will enable a guided optimization of existing catalysts and the development of more active/selective processes for biomass transformations to fuels. Such investigations have been carried out with the aid of ultrahigh vacuum and its concomitant techniques. The high catalytic activity of platinum in biomass-derived oxygenate transformations has sparked a lot of interest. We herein exploit infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption(TPD), and density functional theory(DFT) to study the adsorption and decomposition of acetic acid on a Pt(111) surface, which was then compared with Ni(111), a model non-noble metal. We found that acetic acid adsorbs molecularly on the Pt(111) surface, interacting through the lone pair of electrons of one oxygen atomat 90 K. At 140 K, the molecular form is still predominant, with some dissociative adsorption (in the form of acetate and hydrogen). Annealing to 193 K led to complete dehydrogenation of molecular acetic acid species leaving adsorbed acetate. At 440 K, decomposition of the acetate species occurs via decarbonylation and decarboxylation as evidenced by desorption peaks for H₂,CO, CO₂ and CHX fragments (x=1, 2) in theTPD.The assignments for the experimental IR peaks were made using visualization of the DFT-calculated vibrational modes. The results showed that acetate adsorbs in a bridged bidentate (μ²η²(O,O)) configuration. The coexistence of linear and bridge bonded CO was also predicted by the DFT results. Similar molecular acid adsorption energy was predicted in the case of Ni(111) whereas a significant difference was found for acetate adsorption.Keywords: acetic acid, platinum, nickel, infared-absorption spectrocopy, temperature programmed desorption, density functional theory
Procedia PDF Downloads 1103926 A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids
Authors: A. Kouloumpis, P. Zygouri, G. Potsi, K. Spyrou, D. Gournis
Abstract:
Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285).Keywords: hybrids, graphene oxide, fullerenes, langmuir-blodgett, intercalated structures
Procedia PDF Downloads 3273925 Isolation, Identification and Measurement of Cottonseed Oil Gossypol in the Treatment of Drug-Resistant Cutaneous Leishmaniasis
Authors: Sara Taghdisi, Mehrosadat Mirmohammadi, Mostafa Mokhtarian, Mohammad Hossein Pazandeh
Abstract:
Leishmaniasis is one of the 10 most important diseases of the World Health Organization with health problems in more than 90 countries. Over one billion people are at risk of these diseases on almost every continent. The present human study was performed to evaluate the therapeutic effect of cotton plant on cutaneous leishmaniasis leision. firstly, the cotton seeds were cleaned and grinded to smaller particles. In the second step, the seeds were oiled by cold press method. In order to separate bioactive compound, after saponification of the oil, its gossypol was hydrolyzed and crystalized. finally, the therapeutic effect of Cottonseed Oil on cutaneous leishmaniasis was investigated. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 1.28±0.12. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. This double-blind randomized controlled clinical trial was performed on 88 cases of leishmaniasis wounds. Patients were randomly divided into two groups of 44 cases. two groups received conventional treatment. In addition to the usual treatment (glucantime), the first group received cottonseed oil and the control group received placebo. The results of the present study showed that the surface of lesion before the intervention and in the first to fourth weeks after the intervention was not significantly different between the two groups (P-value> 0.05). But the surface of lesion in the Intervention group in the eighth and twelfth weeks was lower than the control group (P-value <0.05). This study showed that the improvement of leishmaniasis lesion using topical cotton plant mark in the eighth and twelfth weeks after the intervention was significantly more than the control group. Considering the most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them. Therefore, a plant base bioactive compound such as cottonseed oil can be useful whit fewer side effects.Keywords: cottonseed oil, crystallization, gossypol, leishmaniasis
Procedia PDF Downloads 653924 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool
Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid
Abstract:
The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.Keywords: LNG, pool fire, spill, radiation
Procedia PDF Downloads 4043923 Cold Flow Investigation of Silicon Carbide Cylindrical Filter Element
Authors: Mohammad Alhajeri
Abstract:
This paper reports a computational fluid dynamics (CFD) investigation of cylindrical filter. Silicon carbide cylindrical filter elements have proven to be an effective mean of removing particulates to levels exceeding the new source performance standard. The CFD code is used here to understand the deposition process and the factors that affect the particles distribution over the filter element surface. Different approach cross flow velocity to filter face velocity ratios and different face velocities (ranging from 2 to 5 cm/s) are used in this study. Particles in the diameter range 1 to 100 microns are tracked through the domain. The radius of convergence (or the critical trajectory) is compared and plotted as a function of many parameters.Keywords: filtration, CFD, CCF, hot gas filtration
Procedia PDF Downloads 4633922 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil
Authors: Morteza Mirhosseini, Amir B. Khoshnevis
Abstract:
The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.Keywords: adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil
Procedia PDF Downloads 4933921 Utilization of Low-Cost Adsorbent Fly Ash for the Removal of Phenol from Water
Authors: Ihsanullah, Muataz Ali Atieh
Abstract:
In this study, a low-cost adsorbent carbon fly ash (CFA) was used for the removal of Phenol from the water. The adsorbent characteristics were observed by the Thermogravimetric Analysis (TGA), BET specific surface area analyzer, Zeta Potential and Field Emission Scanning Electron Microscopy (FE-SEM). The effect of pH, agitation speed, contact time, adsorbent dosage, and initial concentration of phenol were studied on the removal of phenol from the water. The optimum values of these variables for maximum removal of phenol were also determined. Both Freundlich and Langmuir isotherm models were successfully applied to describe the experimental data. Results showed that low-cost adsorbent phenol can be successfully applied for the removal of Phenol from the water.Keywords: phenol, fly ash, adsorption, carbon adsorbents
Procedia PDF Downloads 3273920 Dose Measurement in Veterinary Radiology Using Thermoluminescent Dosimeter
Authors: E. Saeedian, M. Shakerian, A. Zarif Sanayei, Z. Rakeb, F. N. Alizadeh, S. Sarshough, S. Sina
Abstract:
Radiological protection for plants and animals is an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing a direct measurements technique with a thermoluminescent dosimeter. These measurements allow the determination of the entrance skin dose (ESD) by calculating the amount of radiation absorbed by the skin during exposure. A group of Thirty TLD-100 dosimeters produced by Harshaw Company, each with repeatability greater than 95% and calibration using ¹³⁷Cs gamma source, were utilized to measure doses to ten small pets, including cats and dogs in the radiological department in a veterinary clinic in Shiraz, Iran. Radiological procedures were performed using a portable imaging unit (Philips Super M100, Philips Medical System, Germany) to acquire images of the abdomen; ten exams of abdomen images of different pets were monitored, measuring the thicknesses of the two projections (lateral and ventrodorsal) and the distance of the X-ray source from the surface of each pet during the exams. A group of two dosimeters was used for each pet which has been stacked on their skin on the abdomen region. The outcome of this study involved medical procedures with the same kVp, mAs, and nearly identical positions for different diagnostic X-ray procedures executed over a period of two months. The result showed the mean ESD value was 260.34±50.06 µGy due to the approximate size of pets. Based on the results, the ESD value is associated with animal size, and larger animals have higher values. If a procedure doesn't require repetition, the dose can be optimized. For smaller animals, the main challenge in veterinary radiology is the dose increase caused by repetitions, which is most noticeable in the ventrodorsal position due to the difficulty in immobilizing the animal. Animals are an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing direct measurements.Keywords: direct dose measuring, dosimetry, radiation protection, veterinary medicine
Procedia PDF Downloads 733919 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody
Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer
Abstract:
The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes
Procedia PDF Downloads 3333918 Advanced Deployable/Retractable Solar Panel System for Satellite Applications
Authors: Zane Brough, Claudio Paoloni
Abstract:
Modern low earth orbit (LEO) satellites that require multi-mission flexibility are highly likely to be repositioned between different operational orbits. While executing this process the satellite may experience high levels of vibration and environmental hazards, exposing the deployed solar panel to dangerous stress levels, fatigue and space debris, hence it is desirable to retract the solar array before satellite repositioning to avoid damage or failure. Furthermore, to accommodate for today's technological world, the power demand of a modern LEO satellite is rapidly increasing, which consequently provides pressure upon the design of the satellites solar array system to conform to the strict volume and mass limitations. A novel concept of deployable/retractable hybrid solar array system, aimed to provide a greater power to volume ratio while dramatically reducing the disadvantages of system mass and cost is proposed. Taking advantage of the new lightweight technology in solar panels, a mechanical system composed of both rigid and flexible solar panels arranged within a petal formation is proposed to yield a stowed to deployment area ratio up to at least 1:7, which improves the power density dramatically. The system consists of five subsystems, the outer ones based on a novel eight-petal configuration that provides a large surface and supports the flexible solar panels. A single cable and spool based hinge mechanism were designed to synchronously deploy/retract the panels in a safe, simple and efficient manner while the mass compared to the previous systems is considerably reduced. The relevant challenge to assure a smooth movement is resolved by a proper minimization of the gearing system and the use of a micro-controller system. A prototype was designed by 3D simulators and successfully constructed and tested. Further design works are in progress to implement an epicyclical gear hinge mechanism, which will further reduce the volume, mass and complexity of the system significantly. The proposed system due to an effective and reliable mechanism provides a large active surface, whilst being very compact. It could be extremely advantageous for use as ground portable solar panel system.Keywords: mechatronic engineering, satellite, solar panel, deployable/retractable mechanism
Procedia PDF Downloads 3813917 Orientation of Rotating Platforms on Mobile Vehicles by GNNS
Authors: H. İmrek, O. Corumluoglu, B. Akdemir, I. Sanlioglu
Abstract:
It is important to be able to determine the heading direction of a moving vehicle with respect to a distant location. Additionally, it is important to be able to direct a rotating platform on a moving vehicle towards a distant position or location on the earth surface, especially for applications such as determination of the Kaaba direction for daily Muslim prayers. GNNS offers some reasonable solutions. In this study, a functional model of such a directing system supported by GNNS is discussed, and an appropriate system is designed for these purposes. An application for directing system is done by using RTK and DGNSS. Accuracy estimations are given for this system.Keywords: GNNS, orientation of rotating platform, vehicle orientation, prayer aid device
Procedia PDF Downloads 398