Search results for: activated carbon cloths
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3544

Search results for: activated carbon cloths

1204 Photocatalytic Packed‐Bed Flow Reactor for Continuous Room‐Temperature Hydrogen Release from Liquid Organic Carriers

Authors: Malek Y. S. Ibrahim, Jeffrey A. Bennett, Milad Abolhasani

Abstract:

Despite the potential of hydrogen (H2) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling has hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction.

Keywords: hydrogen storage, flow chemistry, photocatalysis, solar hydrogen

Procedia PDF Downloads 73
1203 Synthesis and PASS-Assisted Evaluation of New Heterocyclic Compounds Containing Hydroquinoline Scaffold

Authors: Gizachew Mulugeta Manahelohe, Khidmet Safarovich Shikhaliev

Abstract:

There has been a significant surge in interest in the synthesis of heterocyclic compounds that contain hydroquinoline fragments. This surge can be attributed to the broad range of pharmaceutical and industrial applications that these compounds possess. The present study provides a comprehensive account of the synthesis of both linear and fused heterocyclic systems that incorporate hydroquinoline fragments. Furthermore, the pharmacological activity spectra of the synthesized compounds were assessed using the in silico method, employing the prediction of activity spectra of substances (PASS) program. Hydroquinoline nitriles 7 and 8 were prepared through the reaction of the corresponding hydroquinolinecarbaldehyde using a hydroxylammonium chloride/pyridine/toluene system and iodine in aqueous ammonia under ambient conditions, respectively. 2-Phenyl-1,3-oxazol-5(4H)-ones 9a,b and 10a,b were synthesized via the condensation of compounds 5a,b and 6a,b with hippuric acid in acetic acid in 30–60% yield. When activated, 7-methylazolopyrimidines 11a and b were reacted with N-alkyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline-6-carbaldehydes 6a and b, and triazolo/pyrazolo[1,5-a]pyrimidin-6-yl carboxylic acids 12a and b were obtained in 60–70% yield. The condensation of 7-hydroxy-1,2,3,4-tetramethyl-1,2-dihydroquinoline 3 h with dimethylacetylenedicarboxylate (DMAD) and ethyl acetoacetate afforded cyclic products 16 and 17, respectively. The condensation reaction of 6-formyl-7-hydroxy-1,2,2,4-tetramethyl-1,2-dihydroquinoline 5e with methylene-active compounds such as ethyl cyanoacetate/dimethyl-3-oxopentanedioate/ethyl acetoacetate/diethylmalonate/Meldrum’s acid afforded 3-substituted coumarins containing dihydroquinolines 19 and 21. Pentacyclic coumarin 22 was obtained via the random condensation of malononitrile with 5e in the presence of a catalytic amount of piperidine in ethanol. The biological activities of the synthesized compounds were assessed using the PASS program. Based on the prognosis, compounds 13a, b, and 14 exhibited a high likelihood of being active as inhibitors of gluconate 2-dehydrogenase, as well as possessing antiallergic, antiasthmatic, and antiarthritic properties, with a probability value (Pa) ranging from 0.849 to 0.870. Furthermore, it was discovered that hydroquinoline carbonitriles 7 and 8 tended to act as effective progesterone antagonists and displayed antiallergic, antiasthmatic, and antiarthritic effects (Pa = 0.276–0.827). Among the hydroquinolines containing coumarin moieties, compounds 17, 19a, and 19c were predicted to be potent progesterone antagonists, with Pa values of 0.710, 0.630, and 0.615, respectively.

Keywords: heterocyclic compounds, hydroquinoline, vilsmeier-haach formylation, in-silico

Procedia PDF Downloads 10
1202 Failure Analysis of a Hydrocarbon Carrying/Piping System

Authors: Esteban Morales Murillo, Ephraim Mokgothu

Abstract:

This paper presents the findings of a study conducted to investigate the wall thinning in a piping system carrying a mix of hydrocarbons in a petrochemical plant. A detailed investigation including optical inspection and several characterisation techniques such as optical microscopy, SEM/EDX, and XRF/C-S analyses was conducted. The examinations revealed that the wall thinning in the piping system was a result of high-temperature H2/H2S corrosion caused by a susceptible material for this mechanism and operating parameters and effluent concentrations beyond the prescribed limits. The sulfide layers found to testify to the large amounts of H2S that led to material degradation. Deposit analysis revealed that it consisted primarily of carbon, oxygen, iron, chromium and sulfur. Metallographic examinations revealed that the attack initiated from the internal surface and that spheroidization of carbides did occur. The article discusses in detail the contribution failure factors on the Couper-Gorman H2/H2S curves to draw conclusions. Recommendations based on the above findings are also discussed.

Keywords: corrosion, Couper-Gorman, high-temperature corrosion, sulfidation, wall thinning, piping system

Procedia PDF Downloads 367
1201 Effect of Slope Steepness with Toposequent on Erosion Factor: A Study Case of Cikeruh Catchment Area, West Java, Indonesia

Authors: Shantosa Yudha Siswanto, Julianto Arief Ismail, Rachmat Harryanto

Abstract:

The research was conducted with the aim to know the effect of slope steepness on organic carbon and soil erodibility as erosion factor. This research was conducted from September to December 2011 in the Raharja and Cinanjung Village, Tanjungsari, Sumedang District, West Java, Indonesia. The study was carried out using physiographic free survey method, which is a survey based on land physiographic appearance. Soil sampling was carried out into transect on the similarity slope without calculating the point of observation range. Soil sampling was carried onto three classes of slope as follows: 8–15%, 15–25% and 25–40%. Each was consisted of three slope position i.e. top slope, middle slope and down slope and four samples of soil were taken from each of them, hence it resulted in 36 points of observation. The results of this study indicate that gradient of slope have some significant contribution in every sample. Middle slope with gradient 26-40% has the highest potential erosion occurrence. It has organic C content (0.84%) and the highest erodibility value (0.1092).

Keywords: slope steepness, erosion, erodibility, erosion factor

Procedia PDF Downloads 389
1200 Numerical Investigation for External Strengthening of Dapped-End Beams

Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah

Abstract:

The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.

Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation

Procedia PDF Downloads 100
1199 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation

Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha

Abstract:

Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.

Keywords: mesenchymal stem cells, cryopreservation, stemness, senescence

Procedia PDF Downloads 213
1198 Photocatalytic Hydrogen Production from Butanol over Ag/TiO2

Authors: Thabelo Nelushi, Michael Scurrell, Tumelo Seadira

Abstract:

Global warming is one of the most important environmental issues which arise from occurrence of gases such as carbon dioxide (CO2) and methane (CH4) in the atmosphere. Exposure to these greenhouse gases results in health risk. Hydrogen is regarded as an alternative energy source which is a clean energy carrier for the future. There are different methods to produce hydrogen such as steam reforming, coal gasification etc., however the challenge with these processes is that they emit CO and CO2 gases and are costly. Photocatalytic reforming is a substitute process which is fascinating due to the combination of solar energy and renewable sources and the use of semiconductor materials such as catalysts. TiO2 is regarded as the most promising catalysts. TiO2 nanoparticles prepared by hydrothermal method and Ag/TiO2 are being investigated for photocatalytic production of hydrogen from butanol. The samples were characterized by raman spectroscopy, TEM/SEM, XRD, XPS, EDAX, DRS and BET surface area. 2 wt% Ag-doped TiO2 nanoparticle showed enhanced hydrogen production compared to a non-doped TiO2. The results of characterization and photoactivity shows that TiO2 nanoparticles play a very important role in producing high hydrogen by utilizing solar irradiation.

Keywords: butanol, hydrogen production, silver particles, TiO2 nanoparticles

Procedia PDF Downloads 192
1197 Liver Regeneration of Small in situ Injury

Authors: Ziwei Song, Junjun Fan, Jeremy Teo, Yang Yu, Yukun Ma, Jie Yan, Shupei Mo, Lisa Tucker-Kellogg, Peter So, Hanry Yu

Abstract:

Liver is the center of detoxification and exposed to toxic metabolites all the time. It is highly regenerative after injury, with the ability to restore even after 70% partial hepatectomy. Most of the previous studies were using hepatectomy as injury models for liver regeneration study. There is limited understanding of small-scale liver injury, which can be caused by either low dose drug consumption or hepatocyte routine metabolism. Although these small in situ injuries do not cause immediate symptoms, repeated injuries will lead to aberrant wound healing in liver. Therefore, the cellular dynamics during liver regeneration is critical for our understanding of liver regeneration mechanism. We aim to study the liver regeneration of small-scale in situ liver injury in transgenic mice labeling actin (Lifeact-GFP). Previous studies have been using sample sections and biopsies of liver, which lack real-time information. In order to trace every individual hepatocyte during the regeneration process, we have developed and optimized an intravital imaging system that allows in vivo imaging of mouse liver for consecutive 5 days, allowing real-time cellular tracking and quantification of hepatocytes. We used femtosecond-laser ablation to make controlled and repeatable liver injury model, which mimics the real-life small in situ liver injury. This injury model is the first case of its kind for in vivo study on liver. We found that small-scale in situ liver injury is repaired by the coordination of hypertrophy and migration of hepatocytes. Hypertrophy is only transient at initial phase, while migration is the main driving force to complete the regeneration process. From cellular aspect, Akt/mTOR pathway is activated immediately after injury, which leads to transient hepatocyte hypertrophy. From mechano-sensing aspect, the actin cable, formed at apical surface of wound proximal hepatocytes, provides mechanical tension for hepatocyte migration. This study provides important information on both chemical and mechanical signals that promote liver regeneration of small in situ injury. We conclude that hypertrophy and migration play a dominant role at different stages of liver regeneration.

Keywords: hepatocyte, hypertrophy, intravital imaging, liver regeneration, migration

Procedia PDF Downloads 192
1196 Regenerating Habitats. A Housing Based on Modular Wooden Systems

Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez

Abstract:

Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.

Keywords: modular, timber, flexibility, housing

Procedia PDF Downloads 53
1195 Status of Bio-Graphene Extraction from Biomass: A Review

Authors: Simon Peter Wafula, Ziporah Nakabazzi Kitooke

Abstract:

Graphene is a carbon allotrope made of a two-dimensional shape. This material has got a number of materials researchers’ interest due to its properties that are special compared to ordinary material. Graphene is thought to enhance a number of material properties in the manufacturing, energy, and construction industries. Many studies consider graphene to be a wonder material, just like plastic in the 21st century. This shows how much should be invested in graphene research. This review highlights the status of graphene extracted from various biomass sources together with their appropriate extraction techniques, including the pretreatment methods for a better product. The functional groups and structure of graphene extracted using several common methods of synthesis are in this paper as well. The review explores methods like chemical vapor deposition (CVD), hydrothermal, chemical exfoliation method, liquid exfoliation, and Hummers. Comparative analysis of the various extraction techniques gives an insight into each of their advantages, challenges, and potential scalability. The review also highlights the pretreatment process for biomass before carbonation for better quality of bio-graphene. The various graphene modes, as well as their applications, are in this study. Recommendations for future research for improving the efficiency and sustainability of bio-graphene are highlighted.

Keywords: exfoliation, nanomaterials, biochar, large-scale, two-dimension

Procedia PDF Downloads 29
1194 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.

Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling

Procedia PDF Downloads 407
1193 Properties Modification of Fiber Metal Laminates by Nanofillers

Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi

Abstract:

During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.

Keywords: fiber metal laminate, nanofiller, polymer matrix, property modification

Procedia PDF Downloads 190
1192 Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan

Authors: Ali Jamshidi, Kiyofumi Kurumisawa, Toyoharu Nawa

Abstract:

Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants.

Keywords: zero energy infrastructure, sustainable development, greenhouse gas emission, asphalt pavement

Procedia PDF Downloads 215
1191 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 312
1190 Dependence of Ionomer Loading on the Hydrogen Generation Rate of a Proton Exchange Membrane Electrolyzer

Authors: Yingjeng James Li, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

Membrane electrode assemblies MEAs for proton exchange membrane PEM water electrolyzers were prepared by employing 175um perfluorosulfonic acid PFSA membranes as the PEM, onto which iridium oxide catalyst was coated on one side as the anode and platinum catalyst was coated on the other side as the cathode. The cathode catalyst ink was prepared so that the weight ratio of the catalyst powder to ionomer was 75:25, 70:30, 65:35, 60:40, and 55:45, respectively. Whereas, the ratio of catalyst powder to ionomer of the anode catalyst ink keeps constant at 50:50. All the MEAs have a catalyst coated area of 5cm*5cm. The test cell employs a platinum plated titanium grid as anode gas diffusion media; whereas, carbon paper was employed as the cathode gas diffusion media. The measurements of the MEA gases production rate were carried out by holding the cell voltage ranging from 1.6 to 2.8 volts at room temperature. It was found that the MEA with cathode catalyst to ionomer ratio of 65:35 gives the largest hydrogen production rate which is 2.8mL/cm2*min.

Keywords: electrolyzer, membrane electrode assembly, proton exchange membrane, ionomer, hydrogen

Procedia PDF Downloads 233
1189 Effect of Temperature and Time on the Yield of Silica from Rice Husk Ash

Authors: Mohammed Adamu Musa, Shehu Saminu Babba

Abstract:

The technological trend towards waste utilization and cost reduction in industrial processing has attracted use of Rice Husk as a value added material. Both rice husk (RH) and Rice Husk Ash (RHA) has been found suitable for wide range of domestic as well as industrial applications. Therefore, the purpose of this research is to produce high grade sodium silicate from rice husk ash by considering the effect of temperature and time of heating as the process variables. The experiment was performed by heating the rice husk at temperatures 500 °C, 600 °C, 700 °C and 800 °C and time 60min, 90min, 120min and 150min were used to obtain the ash. 1.0M of aqueous sodium hydroxide solution was used to dissolve the silicate from the ash, which contained crude sodium silicate. In addition, the ash was neutralized by adding 5M of HCL until the pH reached 3.5 to give silica gel. At 6000C and 120mins, 94.23% silica was obtained from the RHA. At higher temperatures (700 °C and 800 °C) the percentage yield of silica reduced due to surface melting and carbon fixation in the lattice caused by presence of potassium. For this research, 600 °C is considered to be the optimum temperature for silica production from RHA. Silica produced from RHA can generate aggregate value and can be used in areas such as pulp and paper, plastic and rubber reinforcement industries.

Keywords: burning, rice husk, rice husk ash, silica, silica gel, temperature

Procedia PDF Downloads 215
1188 Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactant, biodegradability, critical micelle concentration, lagoon Marchika

Procedia PDF Downloads 335
1187 Let-7 Mirnas Regulate Inflammatory Cytokine Production in Bovine Endometrial Cells after Lipopolysaccharide Challenge by Targeting TNFα

Authors: S. Ibrahim, D. Salilew-Wondim, M. Hoelker, C. Looft, E. Tholen, C. Grosse-Brinkhaus, K. Schellander, C. Neuhoff, D. Tesfaye

Abstract:

Bovine endometrial cells appear to have a key role in innate immune defense of the female genital tract. A better understanding of molecular changes in microRNAs (miRNAs) and their target genes expression may identify reliable prognostic indicators for cows that will resolve inflammation and resume cyclicity. In the current study, we hypothesized that let-7 miRNAs family has a primary role in the innate immune defence of the endometrium tissue against bacterial infection, which is partly achieved via regulating mRNA stability of pro-inflammatory cytokines at the post-transcriptional level. Therefore, we conducted two experiments. In the first experiment, primary bovine endometrial cells were challenged with clinical (3.0 μg/ml) and sub-clinical (0.5 μg/ml) doses of lipopolysaccharide (LPS) for 24h. In the 2nd experiment, we have investigated the potential role of let-7 miRNAs (let-7a and let-7f) using gain and loss of function approaches. Additionally, tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 induced transcript 1 (TGFB1I1) and serum deprivation response (SDPR) genes were validated using reporter assay. Here we addressed for the first time that let-7 miRNAs have a precise role in bovine endometrium, where LPS dysregulated let-7 miRNAs family expression was associated with an increased pro-inflammatory cytokine level by directly/indirectly targeting the TNFα, interleukin 6 (IL6), nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), TGFβ1I1 and SDPR genes. To our knowledge, this is the first study showing that TNFα, TGFβ1I1 and SDPR were identified and validated as novel let-7 miRNAs targets and could have a distinct role in inflammatory immune response of LPS challenged bovine endometrial cells. Our data represent a new finding by which uterine homeostasis is maintained through functional regulation of let-7a by down-regulation of pro-inflammatory cytokines expression (TNFα and IL6) at the mRNA and protein levels. These findings suggest that LPS serves as a negative regulator of let-7 miRNAs expression and provides a mechanism for the persistent pro-inflammatory phenotype, which is a hallmark of bovine subclinical endometritis.

Keywords: bovine endometrial cells, let-7, lipopolysaccharide, pro-inflammatory cytokines

Procedia PDF Downloads 358
1186 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines

Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi

Abstract:

One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.

Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine

Procedia PDF Downloads 37
1185 A Prioritisation Guide for More Sustainable Manufacturing Processes

Authors: Cansu Kandemir, Marco Franchino

Abstract:

To attain sustainability goals, the manufacturing industries must assess and improve their processes, adopt the latest technologies, and ensure minimal environmental impact. Ongoing debates claim that the definition of sustainability and its assessment is vague. Companies struggle with understanding which processes they should prioritise and necessitate a methodology to aid decision-making. For that reason, our investigation focused on defining a prioritisation guide to help to manufacture engineers identify areas of a facility to prioritise de-carbonisation efforts based on existing sources of data. The authors at the University of Sheffield Advanced Manufacturing Research Centre (AMRC) worked with a range of major businesses, including Food and Drink (Moy Park), Automotive (Nissan), Aerospace and Defence (BAE, Meggitt, Leonardo, and GKN) and Technology (Accenture and Intellium AI). Collected information has been integrated into a prioritisation guide framework that helps process comparison and decision-making. The framework developed in this study aims to ensure that companies have guidance on where to focus their efforts whilst striving to fulfil their environmental and societal obligations.

Keywords: decision making, sustainability, carbon emissions, manufacturing

Procedia PDF Downloads 40
1184 Using Businesses for Governance and Creating Sustainable Cities

Authors: Parisa Toloue Hayat Azar

Abstract:

Businesses have been playing an important role in the economic growth and social welfare of cities; however, they generally have negative reputations regarding their impact on environmental issues regarding sustainability. However, some believe that by incorporating strategic Corporate Social Responsibility (CSR) activities, businesses will be able to solve problems in society, including environmental ones. Besides economic, social and environmental aspects, governance is another essential pillar for creating sustainable communities and cities. Governance plays a key role in the success of sustainable projects or creating long lasting legacies; an example of this can be creating circular supply chain with collaboration between different businesses, which in the end results in positive economic, social and environmental outcomes for everyone. Governance is a very important parameter in creating the legacy of low carbon and environmentally friendly city due to the fact that, besides building energy efficient buildings and infrastructure, citizens who are also part of the success of this system should know about how to behave and collaborate with others to make the system work. By deploying the philosophy of cultural historical activity theory, this paper explains how influential businesses have been and can be still used as a mediating tool for governance purposes, and succeed in creating shared value and lasting legacy within society.

Keywords: business, governance, CSR, sustainability

Procedia PDF Downloads 211
1183 Isolation of Antimicrobial Compounds from Marine Sponge Neopetrosia exigua

Authors: Haitham Qaralleh, Syed Z. Idid, Shahbudin Saad, Deny Susanti, Osama Althunibat

Abstract:

This study was carried out to isolate the active antimicrobial compounds from Neopetrosia exigua using bio-guided assay isolation against Staphylococcus aureus. N. exigua was extracted using methanol and subjected to liquid-liquid extraction using solvents with different polarity (n-hexane, carbon tetrachloride, dichloromethane, n-butanol and water). Purification of the active components of n-butanol and dichloromethane fractions was done using Sephadex LH-20 and reverse phase chromatography. Based on the biological guided fractionation results, dichloromethane and n-butanol fractions showed the highest antimicrobial activity. Purification of the active components of n-butanol and dichloromethane fractions yielded three compounds. The structure of the isolated compounds were elucidated and found to be 5-hydroxy-1H-indole-3-carboxylic acid methyl ester, cyclo-1`-demethylcystalgerone and avarol derivative. Avarol was showed potent bactericidal effect against S. aureus. N. exigua appears to be rich source of natural antimicrobial agents. Further studies are needed to investigate the mode of action of these compounds.

Keywords: antimicrobial, avarol, Neopetrosia exigua, Staphylococcus aureus

Procedia PDF Downloads 416
1182 Validation of Two Field Base Dynamic Balance Tests in the Activation of Selected Hip and Knee Stabilizer Muscles

Authors: Mariam A. Abu-Alim

Abstract:

The purpose of this study was to validate muscle activation amplitudes of two field base dynamic balance tests that are used as strengthen and motor control exercises too in the activation of selected hip and knee stabilizer muscles. Methods: Eighteen college-age females students (21±2 years; 65.6± 8.7 kg; 169.7±8.1 cm) who participated at least for 30 minutes in physical activity most days of the week volunteered. The wireless BIOPAC (MP150, BIOPAC System. Inc, California, USA) surface electromyography system was used to validate the activation of the Gluteus Medius and the Adductor Magnus of hip stabilizer muscles; and the Hamstrings, Quadriceps, and the Gastrocnemius of the knee stabilizer muscles. Surface electrodes (EL 503, BIOPAC, System. Inc) connected to dual wireless EMG BioNormadix Transmitters were place on selected muscles of participants dominate side. Manual muscle testing was performed to obtain the maximal voluntary isometric contraction (MVIC) in which all collected muscle activity data during the three reaching direction: anterior, posteromedial, posterolateral of the Star Excursion Balance Test (SEBT) and the Y-balance Test (YBT) data could be normalized. All participants performed three trials for each reaching direction of the SEBT and the YBT. The domanial leg trial for each participant was selected for analysis which was also the standing leg. Results: the selected hip stabilizer muscles (Gluteus Medius, Adductor Magnus) were both greater than 100%MVIC during the performance of the SEBT and in all three directions. Whereas, selected knee stabilizer muscles had greater activation 0f 100% MVIC and were significantly more activated during the performance of the YBT test in all three reaching directions. The results showed that the posterolateral and the postmedial reaching directions for both dynamic balance tests had greater activation levels and greater than 200%MVIC for all tested muscles expect of the hamstrings. Conclusion: the results of this study showed that the SEBT and the YBT had validated high levels of muscular activity for the hip and the knee stabilizer muscles; which can be used to represent the improvement, strength, control and the decreasing in the injury levels. Since these selected hip and knee stabilizer muscles, represent 35% of all athletic injuries depending on the type of sport.

Keywords: dynamic balance tests, electromyography, hip stabilizer muscles, nee stabilizer muscles

Procedia PDF Downloads 132
1181 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment

Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis

Abstract:

Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.

Keywords: corrosion, surfactants, steel surface, quantum

Procedia PDF Downloads 343
1180 Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer

Authors: Choy Sonny Yip Hong

Abstract:

This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products.

Keywords: additive manufacturing, 3D printing, eggshell PLA polymer, design innovation, carbon footprint reduction, supply chain optimization, collaborative potential

Procedia PDF Downloads 55
1179 Reversible and Irreversible Wrinkling in Tube Hydroforming Process

Authors: Ali Abd El-Aty, Ahmed Tauseef, Ahmad Farooq

Abstract:

This research aims at analyzing and optimizing the hydroforming process parameters to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed.

Keywords: finite element, hydroforming, process window, wrinkling

Procedia PDF Downloads 264
1178 Prevention of Cellulose and Hemicellulose Degradation on Fungal Pretreatment of Water Hyacinth Using Phanerochaete Chrysosporium

Authors: Eka Sari

Abstract:

Potential degradation of cellulose and hemicellulose during the fungal pretreatment of lignocellulose has led to fermentable sugar yield will be low. This potential is even greater if the pretreatment of lignocellulosic that have low lignin such as water hyacinth. In order to prepare lignocellulose that have low lignin content, especially water hyacinth efforts are needed to prevent the degradation of cellulose and cellulose. One attempt to prevent the degradation of cellulose and hemicellulose is to replace the substrate needed by the addition of a simple carbon compounds such as glucose. Glucose sources used in this study is molasses. The purpose of this research to get the right of concentration of molasses to reduce the degradation of cellulose and hemicellulose during the pretreatment process and obtain fermentable sugar yields on high. The results showed that the addition of molasses with a concentration of 2% is able to reduce the degradation of cellulose from 25.53% to 10% and hemicellulose degradation of 20.12% to 10.89%. Fermentable sugar yields produced only reached 43.91%. To improve the yield of glucose is then performed additional combonation of molasses of 2% molasses and co-factor Mn2+ 0.5%. Fermentable sugar yield increased to 67.66% and the degradation of cellulose and hemicellulose decreased to 2.44% and 2.71%, respectively.

Keywords: water hyacinth, cellulose, hemicelulose, degradation, pretreatment, fungus

Procedia PDF Downloads 537
1177 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation

Authors: Azeem Ur Rehman, Asma Tayyaba

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell

Procedia PDF Downloads 472
1176 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 597
1175 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition

Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang

Abstract:

The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.

Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate

Procedia PDF Downloads 412