Search results for: penalized regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3236

Search results for: penalized regression

956 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 157
955 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 187
954 Assessment and Evaluation Resilience of Urban Neighborhoods in Coping with Natural Disasters in in the Metropolis of Tabriz (Case Study: Region 6 of Tabriz)

Authors: Ali panahi-Kosar Khosravi

Abstract:

Earthquake resilience is one of the most important theoretical and practical concepts in crisis management. Over the past few decades, the rapid growth of urban areas and developing lower urban areas (especially in developing countries) have made them more vulnerable to human and natural crises. Therefore, the resilience of urban communities, especially low-income and unhealthy neighborhoods, is of particular importance. The present study seeks to assess and evaluate the resilience of neighborhoods in the center of district 6 of Tabriz in terms of awareness, knowledge and personal skills, social and psychological capital, managerial-institutional, and the ability to return to appropriate and sustainable conditions. The research method in this research is descriptive-analytical. The authors used library and survey methods to collect information and a questionnaire to assess resilience. The statistical population of this study is the total households living in the four neighborhoods of Shanb Ghazan, Khatib, Gharamalek, and Abuzar alley. Three hundred eighty-four families from four neighborhoods were selected based on the Cochran formula using a simple random sampling method. A one-sample t-test, simple linear regression, and structural equations were used to test the research hypotheses. Findings showed that only two social and psychological awareness and capital indicators in district 6 of Tabriz had a favorable and approved status. Therefore, considering the multidimensional concept of resilience, district 6 of Tabriz is in an unfavorable resilience situation. Also, the findings based on the analysis of variance indicated no significant difference between the neighborhoods of district 6 in terms of resilience, and most neighborhoods are in an unfavorable situation.

Keywords: resilience, statistical analysis, earthquake, district 6 of tabriz

Procedia PDF Downloads 78
953 Predicting Factors of Hearing Protection Device Use of Workers in Kaolin Mineral Dressing Factories, Thailand

Authors: Watcharapong Yaowarat, Thanee Kaewthummanukul, Waruntorn Jongrungrotsakul

Abstract:

Noise-induced hearing loss, the most significant occupational and safety problem among the working population, can be effectively prevented through hearing protection devices (HPDs) use. This study aimed to examine whether the following factors, perceived benefits, perceived barriers, perceived self-efficacy, and interpersonal and situational influences about using hearing protection could predict HPD use among 132 qualified workers in production lines at Kaolin Mineral Dressing factories, Uttaradit and Lampang provinces. Data collection was undertaken from August to September 2020 according to the interview form developed by Yaruang et al. (2010), which was assured by a panel of experts and its reliability value was at an acceptable level. Data analysis was performed using logistic regression analysis. The results revealed that only the situational factor of using hearing protection could predict HPD use, which accounted for 21.80 percent of the total variance for HPD use. It was also found that the study sample who had a score for the situational factors on using hearing protection greater than or equal to the median was 4.16 times more likely to use HPDs than those who had lower median scores. (OR = 4.16, p < .05). The results, thus, indicate that organization policies addressing worker health along with enhancing a supportive environment for HPD use, in particular, the provision of various HPDs, are of great importance. Therefore, occupational health nurses and related health teams should enhance workers’ use of HPDs effectively through knowledge dissemination by adopting strategies appropriate to the workplace context leading to an achievement of worker health policy focusing on work safety.

Keywords: predicting factors, hearing protection device, factors predicting hearing protection device use, kaolin mineral dressing factories

Procedia PDF Downloads 139
952 Hepatic Regenerative Capacity after Acetaminophen-Induced Liver Injury in Mouse Model

Authors: N. F. Hamid, A. Kipar, J. Stewart, D. J. Antoine, B. K. Park, D. P. Williams

Abstract:

Acetaminophen (APAP) is a widely used analgesic that is safe at therapeutic doses. The mouse model of APAP has been extensively used for studies on pathogenesis and intervention of drug induced liver injury based on the CytP450 mediated formation of N-acetyl-p-benzo-quinoneimine and, more recently, as model for mechanism based biomarkers. Delay of the fasted CD1 mice to rebound to the basal level of hepatic GSH compare to fed mice is reported in this study. Histologically, 15 hours fasted mice prior to APAP treatment leading to overall more intense cell loss with no evidence of apoptosis as compared to non-fasted mice, where the apoptotic cells were clearly seen on cleaved caspase-3 immunostaining. After 15 hours post APAP administration, hepatocytes underwent stage of recovery with evidence of mitotic figures in fed mice and return to completely no histological difference to control at 24 hours. On the contrary, the evidence of ongoing cells damage and inflammatory cells infiltration are still present on fasted mice until the end of the study. To further measure the regenerative capacity of the hepatocytes, the inflammatory mediators of cytokines that involved in the progression or regression of the toxicity like TNF-α and IL-6 in liver and spleen using RT-qPCR were also included. Yet, quantification of proliferating cell nuclear antigen (PCNA) has demonstrated the time for hepatic regenerative in fasted is longer than that to fed mice. Together, these data would probably confirm that fasting prior to APAP treatment does not only modulate liver injury, but could have further effects to delay subsequent regeneration of the hepatocytes.

Keywords: acetaminophen, liver, proliferating cell nuclear antigen, regeneration, apoptosis

Procedia PDF Downloads 433
951 Major Sucking Pests of Rose and Their Seasonal Abundance in Bangladesh

Authors: Md Ruhul Amin

Abstract:

This study was conducted in the experimental field of the Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during November 2017 to May 2018 with a view to understanding the seasonal abundance of the major sucking pests namely thrips, aphid and red spider mite on rose. The findings showed that the thrips started to build up their population from the middle of January with abundance 1.0 leaf⁻¹, increased continuously, reached to the peak level (2.6 leaf⁻¹) in the middle of February and then declined. Aphid started to build up their population from the second week of November with abundance 6.0 leaf⁻¹, increased continuously, reached to the peak level (8.4 leaf⁻¹) in the last week of December and then declined. Mite started to build up their population from the first week of December with abundance 0.8 leaf⁻¹, increased continuously, reached to the peak level (8.2 leaf⁻¹) in the second week of March and then declined. Thrips and mite prevailed until the last week of April, and aphid showed their abundance till last week of May. The daily mean temperature, relative humidity, and rainfall had an insignificant negative correlation with thrips and significant negative correlation with aphid abundance. The daily mean temperature had significant positive, relative humidity had an insignificant positive, and rainfall had an insignificant negative correlation with mite abundance. The multiple linear regression analysis showed that the weather parameters together contributed 38.1, 41.0 and 8.9% abundance on thrips, aphid and mite on rose, respectively and the equations were insignificant.

Keywords: aphid, mite, thrips, weather factors

Procedia PDF Downloads 162
950 The Role of HPV Status in Patients with Overlapping Grey Zone Cancer in Oral Cavity and Oropharynx

Authors: Yao Song

Abstract:

Objectives: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of the oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. Methods: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database was compared to patients with an oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status, and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by 10-fold cross validation. Results: A total of 3318 GZSCC, 10792 OPSCC, and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) was the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. Conclusions: GZSCC patients had distinct clinical characteristics and prognoses compared with OPSCC and OCSCC; integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.

Keywords: GZSCC, OCSCC, OPSCC, HPV

Procedia PDF Downloads 75
949 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana

Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu

Abstract:

Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.

Keywords: anxiety, depression, sickle cell disease, socio-demographic quality of life, characteristics, Ghana

Procedia PDF Downloads 476
948 Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys.

Keywords: angle of internal friction, overconsolidation ratio, granular soils, P-wave velocity, SV-wave velocity, SH-wave velocity

Procedia PDF Downloads 158
947 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning

Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis

Abstract:

Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.

Keywords: space syntax, economic activities, multilevel model, Chinese city

Procedia PDF Downloads 124
946 Assessing and Identifying Factors Affecting Customers Satisfaction of Commercial Bank of Ethiopia: The Case of West Shoa Zone (Bako, Gedo, Ambo, Ginchi and Holeta), Ethiopia

Authors: Habte Tadesse Likassa, Bacha Edosa

Abstract:

Customer’s satisfaction was very important thing that is required for the existence of banks to be more productive and success in any organization and business area. The main goal of the study is assessing and identifying factors that influence customer’s satisfaction in West Shoa Zone of Commercial Bank of Ethiopia (Holeta, Ginchi, Ambo, Gedo and Bako). Stratified random sampling procedure was used in the study and by using simple random sampling (lottery method) 520 customers were drawn from the target population. By using Probability Proportional Size Techniques sample size for each branch of banks were allocated. Both descriptive and inferential statistics methods were used in the study. A binary logistic regression model was fitted to see the significance of factors affecting customer’s satisfaction in this study. SPSS statistical package was used for data analysis. The result of the study reveals that the overall level of customer’s satisfaction in the study area is low (38.85%) as compared those who were not satisfied (61.15%). The result of study showed that all most all factors included in the study were significantly associated with customer’s satisfaction. Therefore, it can be concluded that based on the comparison of branches on their customers satisfaction by using odd ratio customers who were using Ambo and Bako are less satisfied as compared to customers who were in Holeta branch. Additionally, customers who were in Ginchi and Gedo were more satisfied than that of customers who were in Holeta. Since the level of customers satisfaction was low in the study area, it is more advisable and recommended for concerned body works cooperatively more in maximizing satisfaction of their customers.

Keywords: customers, satisfaction, binary logistic, complain handling process, waiting time

Procedia PDF Downloads 465
945 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 63
944 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 111
943 Electrical Conductivity as Pedotransfer Function in the Determination of Sodium Adsorption Ratio in Soil System in Managing Micro Level Farming Practices in India: An Effective Low Cost Technology

Authors: Usha Loganathan, Haresh Pandya

Abstract:

Analysis and correlation of soil properties represent an important outset for precision agriculture and is currently promoted and implemented in the developed world. Establishing relationships among indices of soil salinity has always been a challenging task in salt affected soils necessitating unique approaches for their reclamation and management to sustain long term productivity of Soil. Soil salinity indices like Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) are normally used to characterize soils as either sodic or saline sodic. Currently, Determination of Soil sodium adsorption ratio is a more accepted and reliable measure of soil salinity. However, it involves arduous and protracted laboratory investigations which demand evolving new and economical methods to determine SAR based on simple soil salinity index. A linear regression model to predict soil SAR from soil electrical conductivity has been developed and presented in this paper as per which, soil SAR could very well be worked out as a pedotransfer function of soil EC. The present study was carried out in Orathupalayam (11.09-11.11 N latitude and 74.54-77.59 E longitude) in the vicinity of Orathupalayam Reservoir of Noyyal River Basin, India, over a period of 3 consecutive years from September 2013 through February 2016 in different locations chosen randomly through different seasons. The research findings are discussed in the light of micro level farming practices in India and recommend determination of SAR as a low cost technology aiding in the effective management of salt affected agricultural land.

Keywords: electrical conductivity, orathupalayam, pedotranfer function, sodium adsorption ratio

Procedia PDF Downloads 254
942 Assessment of Work-Related Stress and Its Predictors in Ethiopian Federal Bureau of Investigation in Addis Ababa

Authors: Zelalem Markos Borko

Abstract:

Work-related stress is a reaction that occurs when the work weight progress toward becoming excessive. Therefore, unless properly managed, stress leads to high employee turnover, decreased performance, illness and absenteeism. Yet, little has been addressed regarding work-related stress and its predictors in the study area. Therefore, the objective of this study was to assess stress prevalence and its predictors in the study area. To that effect, a cross-sectional study design was conducted on 281 employees from the Ethiopian Federal Bureau of Investigation by using stratified random sampling techniques. Survey questionnaire scales were employed to collect data. Data were analyzed by percentage, Pearson correlation coefficients, simple linear regression, multiple linear regressions, independent t-test and one-way ANOVA statistical techniques. In the present study13.9% of participants faced high stress, whereas 13.5% of participants faced low stress and the rest 72.6% of officers experienced moderate stress. There is no significant group difference among workers due to age, gender, marital status, educational level, years of service and police rank. This study concludes that factors such as role conflict, performance over-utilization, role ambiguity, and qualitative and quantitative role overload together predict 39.6% of work-related stress. This indicates that 60.4% of the variation in stress is explained by other factors, so other additional research should be done to identify additional factors predicting stress. To prevent occupational stress among police, the Ethiopian Federal Bureau of Investigation should develop strategies based on factors that will help to develop stress reduction management.

Keywords: work-related stress, Ethiopian federal bureau of investigation, predictors, Addis Ababa

Procedia PDF Downloads 70
941 Trauma Informed Healthy Lifestyle Program for Young Adults

Authors: Alicia Carranza, Hildemar Dos Santos, W. Lawrence Beeson, R. Patti Herring, Kimberly R. Freeman, Adam Arechiga

Abstract:

Early exposure to trauma can impact health-related behaviors later in life, which poses a considerable challenge for young adults transitioning into independence when they are lacking the necessary skills and support to live a healthy life. The study will be a non-experimental, mixed methods pre- and post-test (where subjects will serve as their own controls) to determine the impact of an eight-week trauma-informed healthy lifestyle program on self-efficacy for adopting health-promoting behaviors and health outcomes among young adults. Forty-two adults, ages 18-24 who are living in Orange County, CA will be recruited to participate in the eight-week trauma-informed healthy living program. Baseline and post-intervention assessments will be conducted to assess changes in self-efficacy for nutrition and physical exercise, sleep quality and quantity, body mass index (kg/m2), and coping skills used by comparing pre- to post-intervention. Some of the planned activities include cooking demonstrations, mindful eating activities and media literacy using Instagram. Frequencies analyses, paired t-test, and multiple regression will be used to determine if there was a change in coping skills. The results of this study can serve to assess the potential for mitigating the effects of Adverse Childhood Experiences (ACEs), or other toxic stress, experienced during adolescence across the lifespan. Young adults who learn how to cope with stress in a healthy way and engage in a healthy lifestyle can be better prepared to role model that behavior to their children.

Keywords: nutrition, healthy lifestyle, trauma-informed, stress management

Procedia PDF Downloads 106
940 Competition between Verb-Based Implicit Causality and Theme Structure's Influence on Anaphora Bias in Mandarin Chinese Sentences: Evidence from Corpus

Authors: Linnan Zhang

Abstract:

Linguists, as well as psychologists, have shown great interests in implicit causality in reference processing. However, most frequently-used approaches to this issue are psychological experiments (such as eye tracking or self-paced reading, etc.). This research is a corpus-based one and is assisted with statistical tool – software R. The main focus of the present study is about the competition between verb-based implicit causality and theme structure’s influence on anaphora bias in Mandarin Chinese sentences. In Accessibility Theory, it is believed that salience, which is also known as accessibility, and relevance are two important factors in reference processing. Theme structure, which is a special syntactic structure in Chinese, determines the salience of an antecedent on the syntactic level while verb-based implicit causality is a key factor to the relevance between antecedent and anaphora. Therefore, it is a study about anaphora, combining psychology with linguistics. With analysis of the sentences from corpus as well as the statistical analysis of Multinomial Logistic Regression, major findings of the present study are as follows: 1. When the sentence is stated in a ‘cause-effect’ structure, the theme structure will always be the antecedent no matter forward biased verbs or backward biased verbs co-occur; in non-theme structure, the anaphora bias will tend to be the opposite of the verb bias; 2. When the sentence is stated in a ‘effect-cause’ structure, theme structure will not always be the antecedent and the influence of verb-based implicit causality will outweigh that of theme structure; moreover, the anaphora bias will be the same with the bias of verbs. All the results indicate that implicit causality functions conditionally and the noun in theme structure will not be the high-salience antecedent under any circumstances.

Keywords: accessibility theory, anaphora, theme strcture, verb-based implicit causality

Procedia PDF Downloads 198
939 Slum Dwellers Residential Location Choices Decision: A Determinant of Slum Growth in Lagos Mega City

Authors: Olabisi Badmos, Daniel Callo-Concha, Babatunde Agbola, Andreas Rienow, Klaus Greve, Carsten Jurgens

Abstract:

Slums are important components of city development planning, especially in Africa where slum growth is on par with urban growth. Purposefully, our knowledge on the residential choice of slum dwellers, which contributes to population growth in slums, is limited. This is the case in Lagos, a megacity reportedly dominated by slum dwellers. Thus, this study aims to disclose the factors influencing the residential choices and causes of people to remain in Lagos slums. Data was collected through questionnaire administration and focus group discussions. Descriptive statistics were used to analyze and describe the factors influencing residential location choice; logistic regression was utilized to determine the extent to which the neighborhood and household attributes, influence slum dwellers decisions to remain in the slums. Results showed that movement to Lagos was the main cause of population growth in slums; most of the migrants were from closer geopolitical zones (in Nigeria). Further, the movement patterns observed support two theories of human mobility in slums: slum as a sink, and as a final destination. Also, the factors that brought most of the slum dwellers to the slums (cheap housing, proximity to work etc.) differs from the ones that made them stay (Gender, employment status, housing status etc.). This study concludes that residential choice and intention to stay are the major contributors to population growth in a slum. It is therefore important for Lagos state Government to incorporate these elements of residential choices of slum dwellers in their slum management policies if the city aims to be free of slums by 2030

Keywords: Lagos, population growth, residential decision choices, slum

Procedia PDF Downloads 171
938 Teachers' Attitude and Knowledge as Predictors of Effective Use of Digital Devices for the Education of Students with Special Needs in Oyo, Nigeria

Authors: Faseluka Olamide Tope

Abstract:

Giving quality education to students with special needs requires that all necessary resources should be harnessed and digital devices has become important part of resources used as instructional materials in educating students with special needs. Teachers who will make use of these technologies are considered as a part of the most important elements in any educational programme and the effective usage of these technologies largely depends on them. Out of numerous determinants of the effective use of these digital devices, this study examines teachers’ attitude and knowledge as predictors of effective use of digital technology for education of special needs student in Oyo state, Nigeria. The descriptive survey research design of the expo-facto type was adopted for the study, using simple random sampling technique. The study was carried out among sixty (60) participants. Two research questions and two research hypotheses were formulated and used. The data collected through the research instruments for the study were analysedusing frequency, percentage, mean and standard deviation, Pearson, Product, Moment Correlation (PPMC) and Multiple Regression Analysis. The study revealed a significant relationship between teachers attitude (50, < 0.05) and effective use of digital technologies for special needs students. Furthermore, there was a significant contribution F (F=4.289; R=0.876 and R2 =0.758) in the joint contribution of the independent variable  (teacher’s attitude and teacher’s knowledge) and dependent variable (effective use of digital technologies) while teachers knowledge have the highest contribution(b=7.926, t=4.376), the study therefore revealed that teachers attitude and knowledge are potent factors that predicts the effective usage of digital technologies for the education of special needs student. The study recommended that due to the ever-changing nature of technology which comes with new features, teachers should be equipped with appropriate knowledge in order to effectively make use of them and teachers should also develop right attitude toward the use of digital technologies

Keywords: teachers’ knowledge, teachers’ attitude, digital devices, special needs students

Procedia PDF Downloads 47
937 Public Preferences for Lung Cancer Screening in China: A Discrete Choice Experiment

Authors: Zixuan Zhao, Lingbin Du, Le Wang, Youqing Wang, Yi Yang, Jingjun Chen, Hengjin Dong

Abstract:

Objectives: Few results from public attitudes for lung cancer screening are available both in China and abroad. This study aimed to identify preferred lung cancer screening modalities in a Chinese population and predict uptake rates of different modalities. Materials and Methods: A discrete choice experiment questionnaire was administered to 392 Chinese individuals aged 50–74 years who were at high risk for lung cancer. Each choice set had two lung screening options and an option to opt-out, and respondents were asked to choose the most preferred one. Both mixed logit analysis and stepwise logistic analysis were conducted to explore whether preferences were related to respondent characteristics and identify which kinds of respondents were more likely to opt out of any screening. Results: On mixed logit analysis, attributes that were predictive of choice at 1% level of statistical significance included the screening interval, screening venue, and out-of-pocket costs. The preferred screening modality seemed to be screening by low-dose computed tomography (LDCT) + blood test once a year in a general hospital at a cost of RMB 50; this could increase the uptake rate by 0.40 compared to the baseline setting. On stepwise logistic regression, those with no endowment insurance were more likely to opt out; those who were older and housewives/househusbands, and those with a health check habit and with commercial endowment insurance were less likely to opt out from a screening programme. Conclusions: There was considerable variance between real risk and self-perceived risk of lung cancer among respondents, and further research is required in this area. Lung cancer screening uptake can be increased by offering various screening modalities, so as to help policymakers further design the screening modality.

Keywords: lung cancer, screening, China., discrete choice experiment

Procedia PDF Downloads 260
936 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation

Authors: Harini Chakkera

Abstract:

Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.

Keywords: kidney, transplant, diabetes, insulin

Procedia PDF Downloads 90
935 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics

Authors: Said Belaaouad

Abstract:

This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.

Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 97
934 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 258
933 Knowledge, Attitude, Practice and Contributing Factors on Menstrual Hygiene Among High School Students, Ethiopia: Cross-Sectional Study

Authors: Getnet Gedefaw, Fentanesh Endalew, Bitewush Azmeraw, Bethelhem Walelign, Eyob Shitie

Abstract:

Introduction: The issue of menstrual hygiene is often overlooked and has not been sufficiently addressed in the fields of reproductive health in low and middle-income countries. Inadequate menstrual hygiene practices can increase the risk of various infectious and chronic obstetric and gynaecological complications for girls and adolescents. Hence, this study seeks to investigate the knowledge, attitudes, and practices related to menstrual hygiene, along with the factors influencing them, among high school students. Methods: A facility based cross-sectional study was conducted involving a total of 423 study subjects. A systematic random sampling technique was utilized. Data was entered and analyzed through Epi data 3.1 and SPSS 22, respectively. Both univariable and multivariable logistic regression models were employed. A p-value of less than 0.05 was considered statistically significant. Results: This study revealed that 365(89.2%), 200(48.9%) and 196(47.9%) of the study participants have good knowledge, good practice, and good attitudes about menstrual hygiene, respectively. Being higher grade students (grade 10) [AOR=3.96, 95% CI =2.0-7.8] and having good practice of menstrual hygiene (AOR=2.52, 95% CI= 1.26-5) had a positive association with menstrual hygiene knowledge. Whereas maternal education level (AOR=1.86, 95% CI=1.18-2.9) and being a grade 10 student (AOR=2.3, 95% CI=1.48-3.56) were associated factors for practising menstrual hygiene. Additionally, being higher grade students (AOR=1.9, 95% CI=1.2-2.8), age ≥18 years (AOR=1.67, 95% CI=1.09-2.55) were statistically and positively associated with the attitude of menstrual hygiene. Conclusion: The study findings indicated that the knowledge of the study participants regarding menstrual hygiene was high, while their attitudes and practices towards menstrual hygiene were low. It is suggested that raising awareness among reproductive health groups and educating their families and parents could potentially lead to a positive change in their poor practices and attitudes towards menstrual hygiene.

Keywords: menstrual hygiene, menstruation, students, reproductive health

Procedia PDF Downloads 60
932 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor

Procedia PDF Downloads 287
931 Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field

Authors: Arun K. Yadav, Adam J. Carroll, Gonzalo M. Estavillo, Greg J. Rebetzke, Barry J. Pogson

Abstract:

Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field.

Keywords: drought stress, grain yield, metabolomics, stomatal conductance, wheat

Procedia PDF Downloads 266
930 Prevalence and Occupational Factors Associated with Low Back Pain among the Female Garment Workers: A Cross-Sectional Study in Bangladesh

Authors: Fazle Rabbi, Mashuda Khanom Tithi, Tasnim Mirza, Sanjida Rowshan Anannya, Ahmed Hossain

Abstract:

Background: Low Back Pain (LBP) is one of the common health problems among the garment workers that causes workers absenteeism from the work. The purpose of the study is to identify the association between occupational factors and LBP among the female garment workers in Bangladesh. Materials and Methods: A cross-sectional study was conducted with 487 female garment workers from three compliant garment factories of Bangladesh. Face-to-face interview on four different LBP measures along with questions on socio-demographic, occupational, and physical factors were used to collect the data. Result: The prevalence rates for LBP lasts for at least one day during the last six months, chronic pain, intense pain, and seeking medical care for LBP were found 63.04%, 38.60%, 13.76%, and 18.89%, respectively among the female garments workers. The multivariate logistic regression analysis indicates that duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) are positively associated with LBP. Besides, age, BMI, family income, marital status and number of children are also found positively associated with the LBP measures. Conclusion: The prevalence of LBP among female garment workers in Bangladesh is found high. The duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) play a significant role in developing LBP among the female workers. Factories need to consider training programs on the appropriate technique of weight bearing. It is also important to conduct regular screening programs to identify LBP, especially with married, overweight/obese and older age group to reduce the occurrence of LBP.

Keywords: Bangladesh, garment workers, low back pain, occupational health

Procedia PDF Downloads 198
929 The Differences in Organizational Citizenship Behavior Based on Work Status of Hotels Employees in Bali in Terms of Quality of Work Life

Authors: Ni Wayan Sinthia Widiastuti, Komang Rahayu Indrawati

Abstract:

The increasing number of tourists coming to Bali, causing accommodation facilities, such as hotels have increased. The existence of hotel needs will be the source of labor and cost efficiency, so that hotel management employs employees with different working status. The hospitality industry is one of the sectors that require organizational citizenship behavior because, the main goal of every hotel, in general, was to provide the best service and quality to tourists. The purpose of this study was to determine the differences in organizational citizenship behavior based on work status of employees at the Hotel in Bali in terms of quality of work life. Research sample was chosen randomly through two-stage cluster sampling which succeeds to obtain 126 samples from 11 hotels in Denpasar, Bali. The subjects consisted of 64 employees with Employment Agreement of Uncertain Time or who is often called a permanent employee and 62 employees with Employment Agreement of Certain Time or better known as contract employees, outsourcing, and daily workers. Instruments in this study were the scale of organizational citizenship behavior and the scale of quality of work life. The results of ANCOVA analysis showed there were differences in organizational citizenship behavior based on employee work status in terms of quality of work life. Differences in organizational citizenship behavior and quality of work life based on work status of employees using comparative test was analysis by independent sample t-test shows there were differences in organizational citizenship behavior and quality of work life between employees with different working status in hotels in Bali. The result of the regression analysis showed the functional relationship between quality of work life and organizational citizenship behavior.

Keywords: hotel in Bali, organizational citizenship behavior, quality of work life, work status of employees

Procedia PDF Downloads 286
928 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
927 Factors Impact Satisfaction and Continuance Intention to Use Facebook

Authors: Bataineh Abdallah, Alabdallah Ghaith, Alkharabshe Abdalhameed

Abstract:

Social media is an umbrella term for different types of online communication channels. The most prominent forms can be divided into four categories: Collaborative projects (e.g. Wikipedia, comparison-shopping sites), blogs (e.g. Twitter), content communities (e.g. Youtube), social networking sites (e.g. Facebook) social media allow consumers to share their opinions, criticisms and suggestions in public. Facebook launched in 2004, initially targeted college students and later started including everyone has become the most popular sites amongst the young generation for connecting with friends and relatives and for the communication of ideas. In 2013 Facebook penetration rate reached 41.4% of the population making it the most popular social networking site in Jordan. Accordingly, the purpose of this research is to examine the impact of perceived usefulness, perceived ease of use, perceived trust, perceived enjoyment and subjective norms on users' satisfaction and continuance intention to use Facebook in Jordan. Using a structured questionnaire, the primary data was collected from 584 users who have an active Facebook accounts. Multiple regression analysis was employed to test the research model and hypotheses. The research findings indicate that perceived usefulness, perceived ease of use, perceived trust, perceived enjoyment, and subjective norms have a positive and significant effect on users' satisfaction and continuance intention to use Facebook. The findings also indicated that the strongest predictors, based on beta values, on both users' satisfaction and continuance intention to use Facebook is subjective norms and respectively, perceived enjoyment, perceived usefulness, perceived ease of us, and perceived trust. Research results, recommendations, and future research opportunities are also discussed.

Keywords: perceived usefulness, perceived ease of use, perceived trust, perceived enjoyment, perceived subjective norms, users' satisfaction, continuance intention, Facebook

Procedia PDF Downloads 466