Search results for: care networks
4339 Association between Obstetric Factors with Affected Areas of Health-Related Quality of Life of Pregnant Women
Authors: Cinthia G. P. Calou, Franz J. Antezana, Ana I. O. Nicolau, Eveliny S. Martins, Paula R. A. L. Soares, Glauberto S. Quirino, Dayanne R. Oliveira, Priscila S. Aquino, Régia C. M. B. Castro, Ana K. B. Pinheiro
Abstract:
Introduction: As an integral part of the health-disease process, gestation is a period in which the social insertion of women can influence, in a positive or negative way, the course of the pregnancy-puerperal cycle. Thus, evaluating the quality of life of this population can redirect the implementation of innovative practices in the quest to make them more effective and real for the promotion of a more humanized care. This study explores the associations between the obstetric factors with affected areas of health-related quality of life of pregnant women with habitual risk. Methods: This is a cross-sectional, quantitative study conducted in three public facilities and a private service that provides prenatal care in the city of Fortaleza, Ceara, Brazil. The sample consisted of 261 pregnant women who underwent low-risk prenatal care and were interviewed from September to November 2014. The collection instruments were a questionnaire containing socio-demographic and obstetric variables, in addition to the Brazilian version of the Mother scale Generated Index (MGI) characterized by being a specific and objective instrument, consisting of a single sheet and subdivided into three stages. It allows identifying the areas of life of the pregnant woman that are most affected, which could go unnoticed by the pre-formulated measurement instruments. The obstetric data, as well as the data concerning the application of the MGI scale, were compiled and analyzed through the statistical program Statistical Package for the Social Sciences (SPSS), version 20.0. After the compilation, a descriptive analysis was carried out. Then, associations were made between some variables. The tests applied were the Pearson Chi-Square and the Fisher's exact test. The odds ratio was also calculated. These associations were considered statistically significant when the p (probability) value was less than or equal to a level of 5% (α = 0.05) in the tests performed. Results: The variables that negatively reflected the quality of life of the pregnant women and presented a significant association with the polaciuria were: gestational age (p = 0.022) and parity (p = 0.048). Episodes of nausea and vomiting also showed significant with gestational age correlation (p = 0.0001). Evaluating the crossing of stress, we observed a significant association with parity (p = 0.0001). In turn, emotional lability revealed dependence on the variable type of delivery (p = 0.009). Conclusion: The health professionals involved in the assistance to the pregnant woman can understand how the process of gestation is experienced, considering all its peculiar transformations; to meet their individual needs, stimulating their autonomy and their power of choice, envisaging the achievement of a better quality of life related to health in the perspective of health promotion.Keywords: health-related quality of life, obstetric nursing, pregnant women, prenatal care
Procedia PDF Downloads 2974338 Capacity Building and Training of Health Personals for Disaster Preparedness in North East India
Authors: U. K. Tamuli
Abstract:
Introduction: North East India is graced with natural beauty and hazards. This area is prone to major earthquakes, floods, landslides, accidents, terrorist activities etc. Academy of Trauma (AOT), an NGO of Doctors, conducts training programs, mock drills, field trials amongst the doctors and paramedics in North East India. The present study is to evaluate the efficacy of such training in terms of sensitivity, awareness, and delivery systems of the products. Here the health care delivery system for disaster management is inadequate. Clear guideline of mass casualty management is unavailable. AOT has initiated steps to increase the awareness and handling of mass casualty management to improve the emergency health care delivery system. Method: AOT has conducted training programmes on emergency health management, mass casualty management and hospital preparedness amongst 800 doctors and 1200 paramedics in twenty-two districts of Assam in Northeast India. The training module consists of lectures, hands-on workshop using manikins, mock drills, distribution of manuals, emergency management exercises, periodic exchange of experience and debriefings. AOT evaluates the impact of these trainings by conducting pre and post tests of delegates, trainer’s evaluation, delegate’s satisfaction and confidence level and their suggestions. Results: The module, training, hands-on workshops, mock drills were highly appreciated. There is significant improvement in scores on the post-training tests. The confidence level of the participants has risen to deal with emergency medical situation Conclusion: These kinds of trainings increase the awareness of the medical members to handle mass casualties in different situations. One such training actually sensitises the delegates. Repetition of such training, TOT (Training-of-Trainers) programs, and individual efforts of delegates are extremely important for sustenance and success of health care delivery service during disasters in the developing countries. Further collaboration, assistance, networking, suggestions from established global agencies in this field will be highly appreciated.Keywords: capacity building, North East India, non-governmental organization, trauma
Procedia PDF Downloads 2994337 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1044336 Barriers and Facilitators of Community Based Mental Health Intervention (CMHI) in Rural Bangladesh: Findings from a Descriptive Study
Authors: Rubina Jahan, Mohammad Zayeed Bin Alam, Sazzad Chowdhury, Sadia Chowdhury
Abstract:
Access to mental health services in Bangladesh is a tale of urban privilege and rural struggle. Mental health services in the country are primarily centered in urban medical hospitals, with only 260 psychiatrists for a population of more than 162 million, while rural populations face far more severe and daunting challenges. In alignment with the World Health Organization's perspective on mental health as a basic human right and a crucial component for personal, community, and socioeconomic development; SAJIDA Foundation a value driven non-government organization in Bangladesh has introduced a Community Based Mental Health (CMHI) program to fill critical gaps in mental health care, providing accessible and affordable community-based services to protect and promote mental health, offering support for those grappling with mental health conditions. The CMHI programme is being implemented in 3 districts in Bangladesh, 2 of them are remote and most climate vulnerable areas targeting total 6,797 individual. The intervention plan involves a screening of all participants using a 10-point vulnerability assessment tool to identify vulnerable individuals. The assumption underlying this is that individuals assessed as vulnerable is primarily due to biological, psychological, social and economic factors and they are at an increased risk of developing common mental health issues. Those identified as vulnerable with high risk and emergency conditions will receive Mental Health First Aid (MHFA) and undergo further screening with GHQ-12 to be identified as cases and non-cases. The identified cases are then referred to community lay counsellors with basic training and knowledge in providing 4-6 sessions on problem solving or behavior activation. In situations where no improvement occurs post lay counselling or for individuals with severe mental health conditions, a referral process will be initiated, directing individuals to ensure appropriate mental health care. In our presentation, it will present the findings from 6-month pilot implementation focusing on the community-based screening versus outcome of the lay counseling session and barriers and facilitators of implementing community based mental health care in a resource constraint country like Bangladesh.Keywords: community-based mental health, lay counseling, rural bangladesh, treatment gap
Procedia PDF Downloads 464335 The Impact of Enhanced Recovery after Surgery (ERAS) Protocols on Anesthesia Management in High-Risk Surgical Patients
Authors: Rebar Mohammed Hussein
Abstract:
Enhanced Recovery After Surgery (ERAS) protocols have transformed perioperative care, aiming to reduce surgical stress, optimize pain management, and accelerate recovery. This study evaluates the impact of ERAS on anesthesia management in high-risk surgical patients, focusing on opioid-sparing techniques and multimodal analgesia. A retrospective analysis was conducted on patients undergoing major surgeries within an ERAS program, comparing outcomes with a historical cohort receiving standard care. Key metrics included postoperative pain scores, opioid consumption, length of hospital stay, and complication rates. Results indicated that the implementation of ERAS protocols significantly reduced postoperative opioid use by 40% and improved pain management outcomes, with 70% of patients reporting satisfactory pain control on postoperative day one. Additionally, patients in the ERAS group experienced a 30% reduction in length of stay and a 20% decrease in complication rates. These findings underscore the importance of integrating ERAS principles into anesthesia practice, particularly for high-risk patients, to enhance recovery, improve patient satisfaction, and reduce healthcare costs. Future directions include prospective studies to further refine anesthesia techniques within ERAS frameworks and explore their applicability across various surgical specialties.Keywords: ERAS protocols, high-risk surgical patients, anesthesia management, recovery
Procedia PDF Downloads 344334 Performance Evaluation of the CSAN Pronto Point-of-Care Whole Blood Analyzer for Regular Hematological Monitoring During Clozapine Treatment
Authors: Farzana Esmailkassam, Usakorn Kunanuvat, Zahraa Mohammed Ali
Abstract:
Objective: The key barrier in Clozapine treatment of treatment-resistant schizophrenia (TRS) includes frequent bloods draws to monitor neutropenia, the main drug side effect. WBC and ANC monitoring must occur throughout treatment. Accurate WBC and ANC counts are necessary for clinical decisions to halt, modify or continue clozapine treatment. The CSAN Pronto point-of-care (POC) analyzer generates white blood cells (WBC) and absolute neutrophils (ANC) through image analysis of capillary blood. POC monitoring offers significant advantages over central laboratory testing. This study evaluated the performance of the CSAN Pronto against the Beckman DxH900 Hematology laboratory analyzer. Methods: Forty venous samples (EDTA whole blood) with varying concentrations of WBC and ANC as established on the DxH900 analyzer were tested in duplicates on three CSAN Pronto analyzers. Additionally, both venous and capillary samples were concomitantly collected from 20 volunteers and assessed on the CSAN Pronto and the DxH900 analyzer. The analytical performance including precision using liquid quality controls (QCs) as well as patient samples near the medical decision points, and linearity using a mix of high and low patient samples to create five concentrations was also evaluated. Results: In the precision study for QCs and whole blood, WBC and ANC showed CV inside the limits established according to manufacturer and laboratory acceptability standards. WBC and ANC were found to be linear across the measurement range with a correlation of 0.99. WBC and ANC from all analyzers correlated well in venous samples on the DxH900 across the tested sample ranges with a correlation of > 0.95. Mean bias in ANC obtained on the CSAN pronto versus the DxH900 was 0.07× 109 cells/L (95% L.O.A -0.25 to 0.49) for concentrations <4.0 × 109 cells/L, which includes decision-making cut-offs for continuing clozapine treatment. Mean bias in WBC obtained on the CSAN pronto versus the DxH900 was 0.34× 109 cells/L (95% L.O.A -0.13 to 0.72) for concentrations <5.0 × 109 cells/L. The mean bias was higher (-11% for ANC, 5% for WBC) at higher concentrations. The correlations between capillary and venous samples showed more variability with mean bias of 0.20 × 109 cells/L for the ANC. Conclusions: The CSAN pronto showed acceptable performance in WBC and ANC measurements from venous and capillary samples and was approved for clinical use. This testing will facilitate treatment decisions and improve clozapine uptake and compliance.Keywords: absolute neutrophil counts, clozapine, point of care, white blood cells
Procedia PDF Downloads 1044333 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 814332 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 1074331 Classification of EEG Signals Based on Dynamic Connectivity Analysis
Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović
Abstract:
In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients
Procedia PDF Downloads 2174330 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1054329 Nurses' Knowledge and Attitudes about Clinical Governance
Authors: Sedigheh Salemi, Mahnaz Sanjari, Maryam Aalaa, Mohammad Mirzabeigi
Abstract:
Clinical governance is the framework within which the health service provider is required to ongoing accountability and improvement of the quality of their services. This cross-sectional study was conducted in 661 nurses who work in government hospitals from 35 hospitals of 9 provinces in Iran. The study was approved by the Nursing Council and was carried out with the authorization of the Research Ethics Committee. The questionnaire included 24 questions in which 4 questions focused on clinical governance defining from the nurses' perspective. The reliability was evaluated by Cronbach's alpha (α=0/83). Statistical analyzes were performed, using SPSS version 16. Approximately 40% of nurses correctly answered that clinical governance is not "system of punishment and rewards for the staff". The most nurses believed that "clinical efficacy" is one of the main components of clinical governance. A few of nurses correctly responded that "Evidence Based Practice" and "management" is not part of clinical governance. The small number of nurses correctly answered that the "maintenance of patient records" and "to recognize the adverse effects" is not the role of nurse in clinical governance. Most "do not know" answer was to the "maintenance of patient records". The most nurses unanimously believed that the implementation of clinical governance led to "promoting the quality of care". About a third of nurses correctly stated that the implementation of clinical governance will not lead to "an increase in salaries and benefits of the medical team". As a member of the health team, nurses are responsible in terms of participation in quality improvement and it is necessary to create an environment in which clinical care will flourish and serve to preserve the high standards.Keywords: clinical governance, nurses, salary, health team
Procedia PDF Downloads 4344328 The OverStitch and OverStitch SX Endoscopic Suturing System in Bariatric Surgery, Closing Perforations and Fistulas and Revision Procedures
Authors: Mohammad Tayefeh Norooz, Amirhossein Kargarzadeh
Abstract:
Overweight and obesity as an abnormality are health threatening factors. Body mass index (BMI) above 25 is referred to as overweight and above 30 as obese. Apollo Endosurgery, Inc., a pioneering company in endoscopy surgeries, is poised to revolutionize patient care with its minimally invasive treatment options. Some product solutions are designed to improve patient outcomes and redefine the future of healthcare. Weight gain post-weight-loss surgery may stem from an enlarged stomach opening, reducing fullness and increasing food intake. Apollo Endosurgery's OverStitch system, a minimally invasive approach, addresses this by using sutures to reduce stomach opening size. This reflects Apollo's commitment to transformative improvements in healing endoscopy, emphasizing a shift towards minimally invasive options. The system's versatility and precision in full-thickness suturing offer treatment alternatives, exemplified in applications like Endoscopic Sleeve Gastroplasty for reshaping obesity management. Apollo’s dedication to pioneering advancements suggests ongoing breakthroughs in minimally invasive surgery, positioning the OverStitch systems as a testament to innovation in patient care.Keywords: apollo endosurgery, endoscopic sleeve gastroplasty, weight loss system, overstitch endoscopic suturing system, therapeutic, perforations, fistula
Procedia PDF Downloads 654327 Attributes of Gratitude in Promoting Purpose in Life of Thai Adolescents
Authors: Karnsunaphat Balthip, Bunrome Suwanphahu
Abstract:
Purpose in life is one attribute of the concept of spirituality which is used in health promotion to promote holistic wellbeing. Purpose is a significant foundation of motivation and achievement that guides adolescents down positive life paths. Adolescents who have life purpose are more likely to achieve greater success and wellbeing in their lives. The current study used qualitative research methodology to describe the experiences that enhanced the purpose in life of 27 Thai adolescents from different backgrounds, living in urban areas in southern Thailand. Data were gathered through in-depth interviews and observation. Thematic analysis methods guided data analysis. The results showed that love and connectedness are important in enhancing purpose in life. They illustrate four attributes of love and connection reflecting the four attributes of gratitude that enhance purpose in life: (1) self-love, or gratitude to oneself, whereby participants endeavor to live life in a positive way by taking care of themselves based on moral and ethical values; (2) connectedness or gratitude to parents or significant others, whereby participants are committed to taking holistic care (physical, psychological, and spiritual) of their significant others; (3) connectedness or gratitude to peers, whereby participants support their peers to help them live their own lives in a positive way; and (4) connectedness or gratitude to the wider world (environment, society, nation and beyond), through a sense of altruism towards others. The findings provide helpful insights for parents, nurses, and other health professionals supporting adolescents to obtain a purpose in life.Keywords: adolescent, gratitude, purpose in life, spirituality
Procedia PDF Downloads 1594326 Analysis of the Impact of Foreign Direct Investment on the Integration of the Automotive Industry of Iran into Global Production Networks
Authors: Bahareh Mostofian
Abstract:
Foreign Direct Investment (FDI) has long been recognized as a crucial driver of economic growth and development in less-developed countries and their integration into Global Production Networks (GPNs). FDI not only brings capital from the core countries but also technology, innovation, and know-how knowledge that can upgrade the capabilities of host automotive industries. On the other hand, FDI can also have negative impacts on host countries if it leads to significant import dependency. In the case of the Iranian automotive sector, the industry greatly benefited from FDI, with Western carmakers dominating the market. Over time, various types of know-how knowledge, including joint ventures (JVs), trade licenses, and technical assistance, have been provided, helping Iran upgrade its automotive industry. While after the severe geopolitical obstacles imposed by both the EU and the U.S., the industry became over-reliant on the car and spare parts imports, and the lack of emphasis on knowledge transfer further affected the growth and development of the Iranian automotive sector. To address these challenges, current research has adopted a descriptive-analytical methodology to illustrate the gradual changes accrued with foreign suppliers through FDI. The research finding shows that after the two-phase imposed sanctions, the detrimental linkages created by overreliance on the car and spare parts imports without any industrial upgrading negatively affected the growth and development of the national and assembled products of the Iranian automotive sector.Keywords: less-developed country, FDI, GPNs, automotive industry, Iran
Procedia PDF Downloads 754325 Identifying Physical and Psycho-Social Issues Facing Breast Cancer Survivors after Definitive Treatment for Early Breast Cancer: A Nurse-Led Clinic Model
Authors: A. Dean, M. Pitcher, L. Storer, K. Shanahan, I. Rio, B. Mann
Abstract:
Purpose: Breast cancer survivors are at risk of specific physical and psycho-social issues, such as arm swelling, fatigue, and depression. Firstly, we investigate symptoms reported by Australia breast cancer survivors upon completion of definitive treatment. Secondly, we evaluate the appropriateness and effectiveness of a multi-centre pilot program nurse-led clinic to identify these issues and make timely referrals to available services. Methods: Patients post-definitive treatment (excluding ongoing hormonal therapy) for early breast cancer or ductal carcinoma in situ were invited to participate. An hour long appointment with a breast care nurse (BCN) was scheduled. In preparation, patients completed validated quality-of-life surveys (FACT-B, Menopause Rating Scale, Distress Thermometer). During the appointment, issues identified in the surveys were addressed and referrals to appropriate services arranged. Results: 183 of 274 (67%) eligible patients attended a nurse-led clinic. Mean age 56.8 years (range 29-87 years), 181/183 women, 105/183 post-menopausal. 96 (55%) participants reported significant level of distress; 31 (18%) participants reported extreme distress or depression. Distress stemmed from a lack of energy (56/175); poor quality of sleep (50/176); inability to work or participate in household activities (35/172) and problems with sex life (28/89). 166 referrals were offered; 94% of patients accepted the referrals. 65% responded to a follow-up survey: the majority of women either strongly agreed or agreed that the BCN was overwhelmingly supportive, helpful in making referrals, and compassionate towards them. 39% reported making lifestyle changes as a result of the BCN. Conclusion: Breast cancer survivors experience a unique set of challenges, including low mood, difficulty sleeping, problems with sex life and fear of disease recurrence. The nurse-led clinic model is an appropriate and effective method to ensure physical and psycho-social issues are identified and managed in a timely manner. This model empowers breast cancer survivors with information about their diagnosis and available services.Keywords: early breast cancer, survivorship, breast care nursing, oncology nursing and cancer care
Procedia PDF Downloads 4024324 Parental Education and Income Influencing Knowledge, Attitudes, and Perceptions of Oral Health Self-Care Practices
Abstract:
Oral health behaviors such as dietary preferences and tooth brushing are acquired during a child’s primary socialization period yet many oral health promotion interventions are implemented without taking into account the role and impact of parental influence in supporting healthy oral health behaviors. The aim and objective of this study was to determine the relationship between parental income and level of education with knowledge, attitudes and perceptions of oral health care practices. Methods: The study design was cross-sectional and exploratory, and data collection occurred in two phases. Phase 1 comprised of a self-administered questionnaire. The sample consisted of parents of 313 Grade 1 learners aged between 5-6 years old attending one of twelve selected public primary schools in the Chatsworth Circuit, Durban, South Africa. Phase 2 comprised of focus group discussions held at 5 purposively selected schools. Data collection comprised of a semi-structured face-to-face group interview with the objective of obtaining a deeper understanding of parental knowledge, attitudes and perceptions of dental caries. Results and Discussion: Almost 56% of participants earned a monthly income of less than R6000 (600 US dollars). Nearly three quarters (77.5%) of participants indicated that they did not have medical aid/insurance scheme. More than three-quarters of the participants (76.6%) identified diet as being the primary cause of decayed teeth. More than half of the study sample (56.1%) indicated that milk teeth were important and that rotten teeth (74.6%) could affect the child’s health. Almost half (49.8%) of participants reported that “bad teeth” were inherited. With more than two-thirds of the participants (77.7%), having at most a high school education, there was a correlation between the level of the caregiver’s education and the oral health care of the child. The analysis of the correlation between a child having decayed teeth and income (p=.007); and the manner in which the income is received (p=.003) was statistically significant. The results indicate that more effort needs to be placed in understanding parental knowledge, perceptions and attitudes towards dental caries. Parental level of education, income and oral health literacy is shown to be related to attitudes, and perceptions towards dental caries and its subsequent preventive measures. These findings have important implications for oral health planning at community and facility-based levels.Keywords: oral health prevention, parental education, dental caries, attitudes and perceptions
Procedia PDF Downloads 3884323 The Developmental Model of Teaching and Learning Clinical Practicum at Postpartum Ward for Nursing Students by Using VARK Learning Styles
Authors: Wanwadee Neamsakul
Abstract:
VARK learning style is an effective method of learning that could enhance all skills of the students like visual (V), auditory (A), read/write (R), and kinesthetic (K). This learning style benefits the students in terms of professional competencies, critical thinking and lifelong learning which are the desirable characteristics of the nursing students. This study aimed to develop a model of teaching and learning clinical practicum at postpartum ward for nursing students by using VARK learning styles, and evaluate the nursing students’ opinions about the developmental model. A methodology used for this study was research and development (R&D). The model was developed by focus group discussion with five obstetric nursing instructors who have experiences teaching Maternal Newborn and Midwifery I subject. The activities related to practices in the postpartum (PP) ward including all skills of VARK were assigned into the matrix table. The researcher asked the experts to supervise the model and adjusted the model following the supervision. Subsequently, it was brought to be tried out with the nursing students who practiced on the PP ward. Thirty third year nursing students from one of the northern Nursing Colleges, Academic year 2015 were purposive sampling. The opinions about the satisfaction of the model were collected using a questionnaire which was tested for its validity and reliability. Data were analyzed using descriptive statistics. The developed model composed of 27 activities. Seven activities were developed as enhancement of visual skills for the nursing students (25.93%), five activities as auditory skills (18.52%), six activities as read and write skills (22.22%), and nine activities as kinesthetic skills (33.33%). Overall opinions about the model were reported at the highest level of average satisfaction (mean=4.63, S.D=0.45). In the aspects of visual skill (mean=4.80, S.D=0.45) was reported at the highest level of average satisfaction followed by auditory skill (mean=4.62, S.D=0.43), read and write skill (mean=4.57, S.D=0.46), and kinesthetic skill (mean=4.53, S.D=0.45) which were reported at the highest level of average satisfaction, respectively. The nursing students reported that the model could help them employ all of their skills during practicing and taking care of the postpartum women and newborn babies. They could establish self-confidence while providing care and felt proud of themselves by the benefits of the model. It can be said that using VARK learning style to develop the model could enhance both nursing students’ competencies and positive attitude towards the nursing profession. Consequently, they could provide quality care for postpartum women and newborn babies effectively in the long run.Keywords: model, nursing students, postpartum ward, teaching and learning clinical practicum
Procedia PDF Downloads 1554322 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 484321 Twitter Ego Networks and the Capital Markets: A Social Network Analysis Perspective of Market Reactions to Earnings Announcement Events
Authors: Gregory D. Saxton
Abstract:
Networks are everywhere: lunch ties among co-workers, golfing partnerships among employees, interlocking board-of-director connections, Facebook friendship ties, etc. Each network varies in terms of its structure -its size, how inter-connected network members are, and the prevalence of sub-groups and cliques. At the same time, within any given network, some network members will have a more important, more central position on account of their greater number of connections or their capacity as “bridges” connecting members of different network cliques. The logic of network structure and position is at the heart of what is known as social network analysis, and this paper applies this logic to the study of the stock market. Using an array of data analytics and machine learning tools, this study will examine 17 million Twitter messages discussing the stocks of the firms in the S&P 1,500 index in 2018. Each of these 1,500 stocks has a distinct Twitter discussion network that varies in terms of core network characteristics such as size, density, influence, norms and values, level of activity, and embedded resources. The study’s core proposition is that the ultimate effect of any market-relevant information is contingent on the characteristics of the network through which it flows. To test this proposition, this study operationalizes each of the core network characteristics and examines their influence on market reactions to 2018 quarterly earnings announcement events.Keywords: data analytics, investor-to-investor communication, social network analysis, Twitter
Procedia PDF Downloads 1264320 Integrated Lateral Flow Electrochemical Strip for Leptospirosis Diagnosis
Authors: Wanwisa Deenin, Abdulhadee Yakoh, Chahya Kreangkaiwal, Orawon Chailapakul, Kanitha Patarakul, Sudkate Chaiyo
Abstract:
LipL32 is an outer membrane protein present only on pathogenic Leptospira species, which are the causative agent of leptospirosis. Leptospirosis symptoms are often misdiagnosed with other febrile illnesses as the clinical manifestations are non-specific. Therefore, an accurate diagnostic tool for leptospirosis is indeed critical for proper and prompt treatment. Typical diagnosis via serological assays is generally performed to assess the antibodies produced against Leptospira. However, their delayed antibody response and complicated procedure are undoubtedly limited the practical utilization especially in primary care setting. Here, we demonstrate for the first time an early-stage detection of LipL32 by an integrated lateral-flow immunoassay with electrochemical readout (eLFIA). A ferrocene trace tag was monitored via differential pulse voltammetry operated on a smartphone-based device, thus allowing for on-field testing. Superior performance in terms of the lowest detectable limit of detection (LOD) of 8.53 pg/mL and broad linear dynamic range (5 orders of magnitude) among other sensors available thus far was established. Additionally, the developed test strip provided a straightforward yet sensitive approach for diagnosis of leptospirosis using the collected human sera from patients, in which the results were comparable to the real-time polymerase chain reaction technique.Keywords: leptospirosis, electrochemical detection, lateral flow immunosensor, point-of-care testing, early-stage detection
Procedia PDF Downloads 1004319 Using Cyclic Structure to Improve Inference on Network Community Structure
Authors: Behnaz Moradijamei, Michael Higgins
Abstract:
Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.Keywords: hypothesis testing, RNBRW, network inference, community structure
Procedia PDF Downloads 1534318 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 1364317 Extracorporeal Co2 Removal (Ecco2r): An Option for Treatment for Refractory Hypercapnic Respiratory Failure
Authors: Shweh Fern Loo, Jun Yin Ong, Than Zaw Oo
Abstract:
Acute respiratory distress syndrome (ARDS) is a common serious condition of bilateral lung infiltrates that develops secondary to various underlying conditions such as diseases or injuries. ARDS with severe hypercapnia is associated with higher ICU mortality and morbidity. Venovenous Extracorporeal membrane oxygenation (VV-ECMO) support has been established to avert life-threatening hypoxemia and hypercapnic respiratory failure despite optimal conventional mechanical ventilation. However, VV-ECMO is relatively not advisable in particular groups of patients, especially in multi-organ failure, advanced age, hemorrhagic complications and irreversible central nervous system pathology. We presented a case of a 79-year-old Chinese lady without any pre-existing lung disease admitted to our hospital intensive care unit (ICU) after acute presentation of breathlessness and chest pain. After extensive workup, she was diagnosed with rapidly progressing acute interstitial pneumonia with ARDS and hypercapnia respiratory failure. The patient received lung protective strategies of mechanical ventilation and neuromuscular blockage therapy as per clinical guidelines. However, hypercapnia respiratory failure was refractory, and she was deemed not a good candidate for VV-ECMO support given her advanced age and high vasopressor requirements from shock. Alternative therapy with extracorporeal CO2 removal (ECCO2R) was considered and implemented. The patient received 12 days of ECCO2R paired with muscle paralysis, optimization of lung-protective mechanical ventilation and dialysis. Unfortunately, the patient still had refractory hypercapnic respiratory failure with dual vasopressor support despite prolonged therapy. Given failed and futile medical treatment, the family opted for withdrawal of care, a conservative approach, and comfort care, which led to her demise. The effectivity of extracorporeal CO2 removal may depend on disease burden, involvement and severity of the disease. There is insufficient data to make strong recommendations about its benefit-risk ratio for ECCO2R devices, and further studies and data would be required. Nonetheless, ECCO2R can be considered an alternative treatment for refractory hypercapnic respiratory failure patients who are unsuitable for initiating venovenous ECMO.Keywords: extracorporeal CO2 removal (ECCO2R), acute respiratory distress syndrome (ARDS), acute interstitial pneumonia (AIP), hypercapnic respiratory failure
Procedia PDF Downloads 674316 Investigating Non-suicidal Self-Injury Discussions on Twitter
Authors: Muhammad Abubakar Alhassan, Diane Pennington
Abstract:
Social networking sites have become a space for people to discuss public health issues such as non-suicidal self-injury (NSSI). There are thousands of tweets containing self-harm and self-injury hashtags on Twitter. It is difficult to distinguish between different users who participate in self-injury discussions on Twitter and how their opinions change over time. Also, it is challenging to understand the topics surrounding NSSI discussions on Twitter. We retrieved tweets using #selfham and #selfinjury hashtags and investigated those from the United kingdom. We applied inductive coding and grouped tweeters into different categories. This study used the Latent Dirichlet Allocation (LDA) algorithm to infer the optimum number of topics that describes our corpus. Our findings revealed that many of those participating in NSSI discussions are non-professional users as opposed to medical experts and academics. Support organisations, medical teams, and academics were campaigning positively on rais-ing self-injury awareness and recovery. Using LDAvis visualisation technique, we selected the top 20 most relevant terms from each topic and interpreted the topics as; children and youth well-being, self-harm misjudgement, mental health awareness, school and mental health support and, suicide and mental-health issues. More than 50% of these topics were discussed in England compared to Scotland, Wales, Ireland and Northern Ireland. Our findings highlight the advantages of using the Twitter social network in tackling the problem of self-injury through awareness. There is a need to study the potential risks associated with the use of social networks among self-injurers.Keywords: self-harm, non-suicidal self-injury, Twitter, social networks
Procedia PDF Downloads 1364315 Medication Errors in a Juvenile Justice Youth Development Center
Authors: Tanja Salary
Abstract:
This paper discusses a study conducted in a juvenile justice facility regarding medication errors. It includes an introduction to data collected about medication errors in a juvenile justice facility from 2011 - 2019 and explores contributing factors that relate to those errors. The data was obtained from electronic incident records of medication errors that were documented from the years 2011 through 2019. In addition, the presentation reviews both current and historical research of empirical data about patient safety standards and quality care comparing traditional health care facilities to juvenile justice residential facilities and acknowledges a gap in research. The theoretical/conceptual framework for the research study was Bandura and Adams’s self-efficacy theory of behavioral change and Mark Friedman’s results-based accountability theory. Despite the lack of evidence in previous studies addressing medication errors in juvenile justice facilities, this presenter will share information that adds to the body of knowledge, including the potential relationship of medication errors and contributing factors of race and age. Implications for future research include the effect that education and training will have on the communication among juvenile justice staff, including nurses, who administer medications to juveniles to ensure adherence to patient safety standards. There are several opportunities for future research concerning other characteristics about factors that may affect medication administration errors within the residential juvenile justice facility.Keywords: Juvenile justice, medication errors, juveniles, error reduction strategies
Procedia PDF Downloads 704314 Barriers and Facilitators for Telehealth Use during Cervical Cancer Screening and Care: A Literature Review
Authors: Reuben Mugisha, Stella Bakibinga
Abstract:
The cervical cancer burden is a global threat, but more so in low income settings where more than 85% of mortality cases occur due to lack of sufficient screening programs. There is consequently a lack of early detection of cancer and precancerous cells among women. Studies show that 3% to 35% of deaths could have been avoided through early screening depending on prognosis, disease progression, environmental and lifestyle factors. In this study, a systematic literature review is undertaken to understand potential barriers and facilitators as documented in previous studies that focus on the application of telehealth in cervical cancer screening programs for early detection of cancer and precancerous cells. The study informs future studies especially those from low income settings about lessons learned from previous studies and how to be best prepared while planning to implement telehealth for cervical cancer screening. It further identifies the knowledge gaps in the research area and makes recommendations. Using a specified selection criterion, 15 different articles are analyzed based on the study’s aim, theory or conceptual framework used, method applied, study findings and conclusion. Results are then tabulated and presented thematically to better inform readers about emerging facts on barriers and facilitators to telehealth implementation as documented in the reviewed articles, and how they consequently lead to evidence informed conclusions that are relevant to telehealth implementation for cervical cancer screening. Preliminary findings of this study underscore that use of low cost mobile colposcope is an appealing option in cervical cancer screening, particularly when coupled with onsite treatment of suspicious lesions. These tools relay cervical images to the online databases for storage and retrieval, they permit integration of connected devices at the point of care to rapidly collect clinical data for further analysis of the prevalence of cervical dysplasia and cervical cancer. Results however reveal the need for population sensitization prior to use of mobile colposcopies among patients, standardization of mobile colposcopy programs across screening partners, sufficient logistics and good connectivity, experienced experts to review image cases at the point-of-care as important facilitators to the implementation of mobile colposcope as a telehealth cervical cancer screening mechanism.Keywords: cervical cancer screening, digital technology, hand-held colposcopy, knowledge-sharing
Procedia PDF Downloads 2244313 Giving Children with Osteogenesis Imperfecta a Voice: Overview of a Participatory Approach for the Development of an Interactive Communication Tool
Authors: M. Siedlikowski, F. Rauch, A. Tsimicalis
Abstract:
Osteogenesis Imperfecta (OI) is a genetic disorder of childhood onset that causes frequent fractures after minimal physical stress. To date, OI research has focused on medically- and surgically-oriented outcomes with little attention on the perspective of the affected child. It is a challenge to elicit the child’s voice in health care, in other words, their own perspective on their symptoms, but software development offers a way forward. Sisom (Norwegian acronym derived from ‘Si det som det er’ meaning ‘Tell it as it is’) is an award-winning, rigorously tested, interactive, computerized tool that helps children with chronic illnesses express their symptoms to their clinicians. The successful Sisom software tool, that addresses the child directly, has not yet been adapted to attend to symptoms unique to children with OI. The purpose of this study was to develop a Sisom paper prototype for children with OI by seeking the perspectives of end users, particularly, children with OI and clinicians. Our descriptive qualitative study was conducted at Shriners Hospitals for Children® – Canada, which follows the largest cohort of children with OI in North America. Purposive sampling was used to recruit 12 children with OI over three cycles. Nine clinicians oversaw the development process, which involved determining the relevance of current Sisom symptoms, vignettes, and avatars, as well as generating new Sisom OI components. Data, including field notes, transcribed audio-recordings, and drawings, were deductively analyzed using content analysis techniques. Guided by the following framework, data pertaining to symptoms, vignettes, and avatars were coded into five categories: a) Relevant; b) Irrelevant; c) To modify; d) To add; e) Unsure. Overall, 70.8% of Sisom symptoms were deemed relevant for inclusion, with 49.4% directly incorporated, and 21.3% incorporated with changes to syntax, and/or vignette, and/or location. Three additions were made to the ‘Avatar’ island. This allowed children to celebrate their uniqueness: ‘Makes you feel like you’re not like everybody else.’ One new island, ‘About Me’, was added to capture children’s worldviews. One new sub-island, ‘Getting Around’, was added to reflect accessibility issues. These issues were related to the children’s independence, their social lives, as well as the perceptions of others. In being consulted as experts throughout the co-creation of the Sisom OI paper prototype, children coded the Sisom symptoms and provided sound rationales for their chosen codes. In rationalizing their codes, all children shared personal stories about themselves and their relationships, insights about their OI, and an understanding of the strengths and challenges they experience on a day-to-day basis. The child’s perspective on their health is a basic right, and allowing it to be heard is the next frontier in the care of children with genetic diseases. Sisom OI, a methodological breakthrough within OI research, will offer clinicians an innovative and child-centered approach to capture this neglected perspective. It will provide a tool for the delivery of health care in the center that established the worldwide standard of care for children with OI.Keywords: child health, interactive computerized communication tool, participatory approach, symptom management
Procedia PDF Downloads 1574312 Management and Evaluation of Developing Medical Device Software in Compliance with Rules
Authors: Arash Sepehri bonab
Abstract:
One of the regions of critical development in medical devices has been the part of the software - as an indispensable component of a therapeutic device, as a standalone device, and more as of late, as applications on portable gadgets. The chance related to a breakdown of the standalone computer program utilized inside healthcare is in itself not a model for its capability or not as a medical device. It is, subsequently, fundamental to clarify a few criteria for the capability of a stand-alone computer program as a medical device. The number of computer program items and therapeutic apps is persistently expanding and so as well is used in wellbeing education (e. g., in clinics and doctors' surgeries) for determination and treatment. Within the last decade, the use of information innovation in healthcare has taken a developing part. In reality, the appropriation of an expanding number of computer devices has driven several benefits related to the method of quiet care and permitted simpler get to social and health care assets. At the same time, this drift gave rise to modern challenges related to the usage of these modern innovations. The program utilized in healthcare can be classified as therapeutic gadgets depending on the way they are utilized and on their useful characteristics. In the event that they are classified as therapeutic gadgets, they must fulfill particular directions. The point of this work is to show a computer program improvement system that can permit the generation of secure and tall, quality restorative gadget computer programs and to highlight the correspondence between each program advancement stage and the fitting standard and/or regulation.Keywords: medical devices, regulation, software, development, healthcare
Procedia PDF Downloads 1114311 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2294310 Structural and Functional Correlates of Reaction Time Variability in a Large Sample of Healthy Adolescents and Adolescents with ADHD Symptoms
Authors: Laura O’Halloran, Zhipeng Cao, Clare M. Kelly, Hugh Garavan, Robert Whelan
Abstract:
Reaction time (RT) variability on cognitive tasks provides the index of the efficiency of executive control processes (e.g. attention and inhibitory control) and is considered to be a hallmark of clinical disorders, such as attention-deficit disorder (ADHD). Increased RT variability is associated with structural and functional brain differences in children and adults with various clinical disorders, as well as poorer task performance accuracy. Furthermore, the strength of functional connectivity across various brain networks, such as the negative relationship between the task-negative default mode network and task-positive attentional networks, has been found to reflect differences in RT variability. Although RT variability may provide an index of attentional efficiency, as well as being a useful indicator of neurological impairment, the brain substrates associated with RT variability remain relatively poorly defined, particularly in a healthy sample. Method: Firstly, we used the intra-individual coefficient of variation (ICV) as an index of RT variability from “Go” responses on the Stop Signal Task. We then examined the functional and structural neural correlates of ICV in a large sample of 14-year old healthy adolescents (n=1719). Of these, a subset had elevated symptoms of ADHD (n=80) and was compared to a matched non-symptomatic control group (n=80). The relationship between brain activity during successful and unsuccessful inhibitions and gray matter volume were compared with the ICV. A mediation analysis was conducted to examine if specific brain regions mediated the relationship between ADHD symptoms and ICV. Lastly, we looked at functional connectivity across various brain networks and quantified both positive and negative correlations during “Go” responses on the Stop Signal Task. Results: The brain data revealed that higher ICV was associated with increased structural and functional brain activation in the precentral gyrus in the whole sample and in adolescents with ADHD symptoms. Lower ICV was associated with lower activation in the anterior cingulate cortex (ACC) and medial frontal gyrus in the whole sample and in the control group. Furthermore, our results indicated that activation in the precentral gyrus (Broadman Area 4) mediated the relationship between ADHD symptoms and behavioural ICV. Conclusion: This is the first study first to investigate the functional and structural correlates of ICV collectively in a large adolescent sample. Our findings demonstrate a concurrent increase in brain structure and function within task-active prefrontal networks as a function of increased RT variability. Furthermore, structural and functional brain activation patterns in the ACC, and medial frontal gyrus plays a role-optimizing top-down control in order to maintain task performance. Our results also evidenced clear differences in brain morphometry between adolescents with symptoms of ADHD but without clinical diagnosis and typically developing controls. Our findings shed light on specific functional and structural brain regions that are implicated in ICV and yield insights into effective cognitive control in healthy individuals and in clinical groups.Keywords: ADHD, fMRI, reaction-time variability, default mode, functional connectivity
Procedia PDF Downloads 258