Search results for: fatty acid composition
3691 Short-Term Effects of Environmentally Relevant Concentrations of Organic UV Filters on Signal Crayfish Pacifastacus Leniusculus
Authors: Viktoriia Malinovska, Iryna Kuklina, Katerina Grabicova, Milos Buric, Pavel Kozak
Abstract:
Personal care products, including organic UV filters, are considered emerging contaminants and their toxic effects have been a concern for the last decades. Sunscreen compounds continually enter the surface waters via sewage water treatment due to incomplete removal and during human recreational and laundry activities. Despite the environmental occurrence of organic UV filters in the freshwater environment, little is known about their impacts on aquatic biota. In this study, environmentally relevant concentrations of 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP-4, 2.5 µg/L) and 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) were used to evaluate the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus during a short time period. The effects of these compounds were evident in experimental animals. Specimens exposed to both tested compounds exhibited significantly bigger changes in distance moved and time movement than controls. Significant differences in changes in mean heart rate were detected in both PBSA and BP-4 experimental groups compared to control groups. Such behavioral and physiological alterations demonstrate the ecological effects of selected sunscreen compounds during a short time period. Since the evidence of the impacts of sunscreen compounds is scarce, the knowledge of how organic UV filters influence aquatic organisms is of key importance for future research.Keywords: aquatic pollutants, behavior, freshwaters, heart rate, invertebrate
Procedia PDF Downloads 1053690 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior
Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa
Abstract:
Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release
Procedia PDF Downloads 2243689 Realization of Hybrid Beams Inertial Amplifier
Authors: Somya Ranjan Patro, Abhigna Bhatt, Arnab Banerjee
Abstract:
Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology.Keywords: inertial amplifier, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers
Procedia PDF Downloads 1013688 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles
Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri
Abstract:
Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid
Procedia PDF Downloads 3313687 Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins
Authors: Hao Cheng, Yingzhou Ni, Amr M. Bakry, Li Liang
Abstract:
Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses.Keywords: milk protein, bioactive nutrient, interaction, protection
Procedia PDF Downloads 4123686 Allopurinol Prophylactic Therapy in the Prevention of Contrast Induced Nephropathy in High Risk Patients Undergoing Coronary Angiography: A Prospective Randomized Controlled Trial
Authors: Seyed Fakhreddin Hejazi, Leili Iranirad, Mohammad Sadeghi, Mohsen Talebizadeh
Abstract:
Background: Contrast-induced nephropathy (CIN) remains to be a potentially serious complication of radiographic procedures. We performed this clinical trial to assess the preventive effect of allopurinol against CIN in high-risk patients undergoing coronary angiography. Methods: In this prospective randomized controlled trial, 140 patients with at least two risk factors for CIN undergoing coronary angiography were randomly assigned to either the allopurinol group or the control group. Patients in the allopurinol group received 300 mg allopurinol 24 hours before a procedure and intravenous hydration for 12 hours before and after coronary angiography, whereas patients in the control group received intravenous hydration. Serum creatinine (SCr), blood urea nitrogen (BUN) and uric acid were measured before contrast exposure and at 48 hours. CIN was defined as an increase of 25% in serum creatinine (SCr) or >0.5 mg/dl 48 hours after contrast administration. Results: CIN occurred in 11 out of 70 (7.9%) patients in the control group and in 8 out of 70 (5.7%) patients in the allopurinol group. There was no significant difference in the incidence of CIN between the two groups at 48 hours after administering the radiocontrast agent (p = 0.459). However, there were significant differences between the two groups in SCr, BUN, uric acid, and eGFR 48 hours after radiocontrast administration (p < 0.05). Conclusion: Our findings revealed that allopurinol had no substantial efficacy over hydration protocol in high-risk patients for the development of CIN.Keywords: contrast-induced nephropathy, allopurinol, coronary angiography, contrast agent
Procedia PDF Downloads 2473685 In Vivo Antiulcer and Anti-Helicobacter pylori Activity of Geraniol on Acetic Acid plus Helicobacter pylori Induced Ulcer in Rats
Authors: Subrat Kumar Bhattamisra, Vivian Lee Yean Yan, Chin Koh Lee, Chew Hui Kuean, Yun Khoon Liew, Mayuren Candasamy
Abstract:
Geraniol, an acyclic monoterpenoid is the main active constituent in the essential oils of rose and palmorosa. Antioxidant, antibacterial, anticancer and antiulcer activity of geraniol was reported by many researchers. The present investigation was designed to study in vivo antiulcer and anti-Helicobacter pylori activity of geraniol. Antiulcer and anti-H. pylori activity of geraniol was evaluated on acetic acid plus H. pylori induced ulcer in rats. Acetic acid (0.03 mL) was injected to the sub-serosal layer of the stomach through laparotomy under anaesthesia. Orogastric inoculation of H. pylori (ATCC 43504) was done twice daily for 7 days. Geraniol (15 and 30 mg/kg), vehicle and standard drugs (Amoxicillin, 50 mg/kg; clarithromycin, 25 mg/kg & omeprazole, 20 mg/kg) was administered twice daily for 14 days. Antiulcer activity of geraniol was examined by the determination of gastric ulcer index, measuring the volume of gastric juice, pH and total acidity, myeloperoxidase activity and histopathological examination. Histopathological investigation for the presence of inflammation, white blood cell infiltration, edema, the mucosal damage was studied. The presence of H. pylori was detected by placing a biopsy sample from antral part of the stomach into rapid urease test. Ulcer index in H. pylori inoculated control group was 4.13 ± 0.85 and was significantly (P < 0.05) lowered in geraniol (30 mg/kg) and reference drug treated group. Geraniol increase the pH of the gastric juice (2.18 ± 0.13 in control vs. 4.14 ± 0.57 in geraniol 30mg/kg) and lower total acidity significantly (P < 0.01) in geraniol (15 & 30 mg/kg). Myeloperoxidase (MPO) activity was measured in stomach homogenate of all the groups. H. pylori control group has significant (P < 0.05) increase in MPO activity compared to normal control group. Geraniol (30 mg/kg) was showed significant (P < 0.05) and most effective among all the groups. Histopathological examination of rat stomach was scored and the total score for H. pylori control group was 8. After geraniol (30 mg/kg) and reference drug treatment, the histopathological score was significantly decreased and it was observed to be 3.5 and 2.0 respectively. Percentage inhibition of H. pylori infection in geraniol (30 mg/kg) and reference drug were found to be 40% and 50% respectively whereas, 100% infection in H. pylori control group was observed. Geraniol exhibited significant antiulcer and anti- H. pylori activity in the rats. Thus, geraniol has the potential for the further development as an effective medication in treating H. pylori associated ulcer.Keywords: geraniol, helicobacter pylori atcc 43504, myeloperoxidase, ulcer
Procedia PDF Downloads 3433684 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation
Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad
Abstract:
Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization
Procedia PDF Downloads 2493683 Experimental Research of Smoke Impact on the Performance of Cylindrical Eight Channel Cyclone
Authors: Pranas Baltrėnas, Dainius Paliulis
Abstract:
Cyclones are widely used for separating particles from gas in energy production objects. Efficiency of normal centrifugal air cleaning devices ranges from 85 to 90%, but weakness of many cyclones is low collection efficiency of particles less than 10 μm in diameter. Many factors have impact on cyclone efficiency – humidity, temperature, gas (air) composition, airflow velocity and etc. Many scientists evaluated only effect of origin and size of PM on cyclone efficiency. Effect of gas (air) composition and temperature on cyclone efficiency still demands contributions. Complex experimental research on efficiency of cylindrical eight-channel system with adjustable half-rings for removing fine dispersive particles (< 20 μm) was carried out. The impact of gaseous smoke components on removal of wood ashes was analyzed. Gaseous components, present in the smoke mixture, with the dynamic viscosity lower than that of same temperature air, decrease the d50 value, simultaneously increasing the overall particulate matter removal efficiency in the cyclone, i.e. this effect is attributed to CO2 and CO, while O2 and NO have the opposite effect. Air temperature influences the d50 value, an increase in air temperature yields an increase in d50 value, i.e. the overall particulate matter removal efficiency declines, the reason for this being an increasing dynamic air viscosity. At 120 °C temperature the d50 value is approximately 11.8 % higher than at air temperature of 20 °C. With an increase in smoke (gas) temperature from 20 °C to 50 °C, the aerodynamic resistance in a 1-tier eight-channel cylindrical cyclone drops from 1605 to 1380 Pa, from 1660 to 1420 Pa in a 2-tier eight-channel cylindrical cyclone, from 1715 to 1450 Pa in a 3-tier eight-channel cylindrical cyclone. The reason for a decline in aerodynamic resistance is the declining gas density. The aim of the paper is to analyze the impact of gaseous smoke components on the eight–channel cyclone with tangential inlet.Keywords: cyclone, adjustable half-rings, particulate matter, efficiency, gaseous compounds, smoke
Procedia PDF Downloads 2893682 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit
Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha
Abstract:
Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics
Procedia PDF Downloads 813681 Enhancing the Quality of Silage Bales Produced by a Commercial Scale Silage Producer in Northern province, Sri Lanka: A Step Toward Supporting Smallholder Dairy Farmers in the Northern Province Sri Lanka
Authors: Harithas Aruchchunan
Abstract:
Silage production is an essential aspect of dairy farming, used to provide high-quality feed to ruminants. However, dairy farmers in Northern Province Sri Lanka are facing multiple challenges that compromise the quality and quantity of silage produced. To tackle these challenges, promoting silage feeding has become an essential component of sustainable dairy farming practices. In this study, silage bale samples were collected from a newly started silage baling factory in Jaffna, Northern province and their quality was analysed at the Veterinary Research Institute laboratory in Kandy in March 2023. The results show the nutritional composition of three Napier grass cultivars: Super Napier, CO6, and Indian Red Napier (BH18). The main parameters analysed were dry matter, pH, lactic acid, soluble carbohydrate, ammonia nitrogen, ash, crude protein, NDF, and ADF. The results indicate that Super Napier and CO6 have higher crude protein content and lower ADF levels, making them suitable for producing high-quality silage. The pH levels of all three cultivars were safe, and the ammonia nitrogen levels were considered appropriate. However, laboratory results indicate that the quality of silage bales produced can be further enhanced. Dairy farmers should be encouraged to adopt these cultivars to achieve better yields as they are high in protein and are better suited to Northern Province's soil and climate. Therefore, it is vital to educate small-scale fodder producers, who supply the raw material to silage factories, on the best practices of cultivating these new cultivars. To improve silage bale production and quality in Northern Province Sri Lanka, we recommend increasing public awareness about silage feeding, providing education and training to dairy farmers and small-scale fodder producers on modern silage production techniques and improving the availability of raw materials for silage production. Additionally, Napier grass cultivars need to be promoted among dairy farmers for better production and quality of silage bales. Failing to improve the quality and quantity of silage bale production could not only lead to the decline of dairy farming in Northern Province Sri Lanka but also the negative impact on the economyKeywords: silage bales, dairy farming, economic crisis, Sri Lanka
Procedia PDF Downloads 923680 Preliminary Phytopharmacological Evaluation of Methanol and Petroleum Ether Extracts of Selected Vegetables of Bangladesh
Authors: A. Mohammad Abdul Motalib Momin, B. Sheikh Mohammad Adil Uddin, C. Md Mamunur Rashid, D. Sheikh Arman Mahbub, E. Mohammad Sazzad Rahman, F. Abdullah Faruque
Abstract:
The present study was designed to investigate the antioxidant and cytotoxicity potential of methanol and pet ether extracts of the Lagenaria siceraria (LM, LP), Cucumis sativus (CSM, CSP), Cucurbita maxima (CMM, CMP) plants. For the phytochemical screening, crude extract was tested for the presence of different chemical groups. In Lagenaria siceraria the following groups were identified: alkaloids, steroids, glycosides and saponins for methanol extract and alkaloids, steroids, glycosides, tannins and saponins are for pet ether extract. Glycosides, steroids, alkaloids, saponins and tannins are present in the methanol extract of Cucumis sativus; the pet ether extract has the alkaloids, steroids and saponins. Glycosides, steroids, alkaloids, saponins and tannins are present in both the methanolic and pet ether extract of Cucurbita maxima. In vitro antioxidant activity of the extracts were performed using DPPH radical scavenging, nitric oxide (NO) scavenging, total antioxidant capacity, total phenol content, total flavonoid content, and Cupric Reducing Antioxidant Capacity assays. The most prominent antioxidant activity was observed with the CSM in the DPPH free radical scavenging test with an IC50 value of 1667.23±11.00271 μg/ml as opposed to that of standard ascorbic acid (IC50 value of 15.707± 1.181 μg/ml.) In total antioxidant capacity method, CMP showed the highest activity (427.81±11.4 mg ascorbic acid/g). The total phenolic and flavonoids content were determined by Folin-Ciocalteu Reagent and aluminium chloride colorimetric method, respectively. The highest total phenols and total flavonoids content were found in CMM and LP with the value of 79.06±16.06 mg gallic acid/g & 119.0±1.41 mg quercetin/g, respectively. In nitric oxide (NO) scavenging the most prominent antioxidant activity was observed in CMM with an IC50 value of 8.119± 0.0036 μg/ml. The Cupric reducing capacity of the extracts was strong and dose dependent manner and CSM showed lowest reducing capacity. The cytotoxicity was determined by Brine shrimp lethality test and among these extracts most potent cytotoxicity was shown by CMM with LC50 value 16.98 µg/ml. The obtained results indicate that the investigated plants could be potential sources of natural antioxidants and can be used for various types of diseases.Keywords: antioxidant, cytotoxicity, methanol, petroleum ether
Procedia PDF Downloads 5773679 Dealing with Buckling Effect in Snorkel by Finite Element Analysis: A Life Enhancement Approach in CAS-OB Operation
Authors: Subodh Nath Patel, Raja Raman, Mananshi Adhikary, Jitendra Mathur, Sandip Bhattacharyya
Abstract:
The composition adjustment by sealed argon bubbling–oxygen blowing (CAS-OB) process is a process designed for adjusting steel composition and temperature during secondary metallurgy. One of the equipment in the said process is a snorkel or bell, fixed to a movable bracket. Snorkel serves the purpose of feeding ferroalloys into the liquid metal simultaneously removing gases to the gas cleaning system through its port at its top. The bell-shaped snorkel consists of two parts. The upper part has an inside liner, and the lower part is lined on both side with high-alumina castable reinforced with 2% stainless steel needles. Both the parts are coupled with a flange bolt system. These flanges were found to get buckled during operation, and the gap was generating between them. This problem was chronic since its. It was expected to give a life of 80 heats, but it was failing within 45-50 heats. After every 25-30 heats, it had to be repaired by changing and/or tightening its nuts and bolts. Visual observation, microstructural analysis through optical microscopes and SEM, hardness measurement and thermal strain calculation were carried out to find out the root cause of this problem. The calculated thermal strain was compared with actual thermal strain; comparison of the two revealed that thermal strain was responsible for buckling. Finite element analysis (FEA) was carried out to reaffirm the effect temperature on the flanges. FEA was also used in the modification in the design of snorkel flange to accommodate thermal strain. Thermal insulation was also recommended which increased its life from 45 heats to 65 heats, impacting business process positively.Keywords: CAS OB process, finite element analysis, snorkel, thermal strain
Procedia PDF Downloads 1373678 Acerola and Orange By-Products as Sources of Bioactive Compounds for Probiotic Fermented Milks
Authors: Tatyane Lopes de Freitas, Antonio Diogo S. Vieira, Susana Marta Isay Saad, Maria Ines Genovese
Abstract:
The fruit processing industries generate a large volume of residues to produce juices, pulps, and jams. These residues, or by-products, consisting of peels, seeds, and pulps, are routinely discarded. Fruits are rich in bioactive compounds, including polyphenols, which have positive effects on health. Dry residues from two fruits, acerola (M. emarginata D. C.) and orange (C. sinensis), were characterized in relation to contents of ascorbic acid, minerals, total dietary fibers, moisture, ash, lipids, proteins, and carbohydrates, and also high performance liquid chromatographic profile of flavonoids, total polyphenols and proanthocyanidins contents, and antioxidant capacity by three different methods (Ferric reducing antioxidant power assay-FRAP, Oxygen Radical Absorbance Capacity-ORAC, 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity). Acerola by-products presented the highest acid ascorbic content (605 mg/100 g), and better antioxidant capacity than orange by-products. The dry residues from acerola demonstrated high contents of proanthocyanidins (617 µg CE/g) and total polyphenols (2525 mg gallic acid equivalents - GAE/100 g). Both presented high total dietary fiber (above 60%) and protein contents (acerola: 10.4%; orange: 9.9%), and reduced fat content (acerola: 1.6%; orange: 2.6%). Both residues showed high levels of potassium, calcium, and magnesium, and were considered sources of these minerals. With acerola by-product, four formulations of probiotics fermented milks were produced: F0 (without the addition of acerola residue (AR)), F2 (2% AR), F5 (5% AR) and F10 (10% AR). The physicochemical characteristics of the fermented milks throughout of storage were investigated, as well as the impact of in vitro simulated gastrointestinal conditions on flavonoids and probiotics. The microorganisms analyzed maintained their populations around 8 log CFU/g during storage. After the gastric phase of the simulated digestion, the populations decreased, and after the enteric phase, no colonies were detected. On the other hand, the flavonoids increased after the gastric phase, maintaining or suffering small decrease after enteric phase. Acerola by-products powder is a valuable ingredient to be used in functional foods because is rich in vitamin C, fibers and flavonoids. These flavonoids appear to be highly resistant to the acids and salts of digestion.Keywords: acerola, orange, by-products, fermented milk
Procedia PDF Downloads 1323677 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf
Authors: Gulnur Arabaci
Abstract:
Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)
Procedia PDF Downloads 3283676 Urban Dust Influence on the Foliar Surface and Biochemical Constituents of Selected Plants in the National Capital Region of Delhi, India
Authors: G. P. Gupta, B. Kumar, S. Singh, U. C. Kulshrestha
Abstract:
Very high loadings of atmospheric dust in the Indian region contribute to remarkably higher levels of particulate matter. During dry weather conditions which prevail most of the year, dustfall is deposited onto the foliar surfaces affecting their morphology, stomata and biochemical constituents. This study reports chemical characteristics of dustfall, its effect on foliar morphology and biochemical constituents of two medicinal plants i.e. Morus (Morus alba) and Arjun (Terminalia arjuna) in the urban environment of National Capital Region (NCR) of Delhi at two sites i.e. Jawaharlal Nehru University (residential) and Sahibabad (industrial). Atmospheric dust was characterized for major anions (F-, Cl-, NO3-, SO4--) and cations (Na+, NH4+, K+, Mg++, Ca++) along with the biochemical parameters Chl a, Chl b, total chlorophyll, carotenoid, total soluble sugar, relative water content (RWC), pH, and ascorbic acid. The results showed that the concentrations of major ions in dustfall were higher at the industrial site as compared to the residential site due to the higher level of anthropogenic activities. Both the plant species grown at industrial site had significantly lower values of chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll, carotenoid but relatively higher values of total soluble sugar and ascorbic acid indicating stressful conditions due to industrial and vehicular emissions.Keywords: dustfall, urban environment, biochemical constituents, atmospheric dust
Procedia PDF Downloads 3053675 Mechanism of pH Sensitive Flocculation for Organic Load and Colour Reduction in Landfill Leachate
Authors: Brayan Daniel Riascos Arteaga, Carlos Costa Perez
Abstract:
Landfill leachate has an important fraction of humic substances, mainly humic acids (HAs), which often represent more than half value of COD, specially in liquids proceeded from composting processes of organic fraction of solid wastes. We propose in this article a new method of pH sensitive flocculation for COD and colour reduction in landfill leachate based on the chemical properties of HAs. Landfill leachate with a high content of humic acids can be efficiently treated by pH sensitive flocculation at pH 2.0, reducing COD value in 86.1% and colour in 84.7%. Mechanism of pH sensitive flocculation is based in protonation first of phenolic groups and later of carboxylic acid groups in the HAs molecules, resulting in a reduction of Zeta potential value. For pH over neutrality, carboxylic acid and phenolic groups are ionized and Zeta potential increases in absolute value, maintaining HAs in suspension as colloids and conducting flocculation to be obstructed. Ionized anionic groups (carboxylates) can interact electrostatically with cations abundant in leachate (site binding) aiding to maintain HAs in suspension. Simulation of this situation and ideal visualization of Zeta potential behavior is described in the paper and aggregation of molecules by H-bonds is proposed as the main step in separation of HAs from leachate and reduction of COD value in this complex liquid. CHNS analysis, FT-IR spectrometry and UV–VIS spectrophotometry show chemical elements content in the range of natural and commercial HAs, clear aromaticity and carboxylic acids and phenolic groups presence in the precipitate from landfill leachateKeywords: landfill leachate, humic acids, COD, chemical treatment, flocculation
Procedia PDF Downloads 713674 Effective Water Purification by Impregnated Carbon Nanotubes
Authors: Raviteja Chintala
Abstract:
Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot
Procedia PDF Downloads 3383673 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria
Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi
Abstract:
Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies
Procedia PDF Downloads 693672 Micropropagation of Rhododendron tomentosum (Ledum palustre): An Endangered Plant of Scientific Interest as the Example of Ex Situ Conservation
Authors: Anna Jesionek, Aleksandra Szreniawa-Sztajnert, Zbigniew Jaremicz, Adam Kokotkiewicz, Natalia Filipowicz, Renata Ochocka, Bozena Zabiegala, Maria Luczkiewicz
Abstract:
Rhododendron tomentosum (formerly Ledum palustre), an evergreen shrub grows in peaty soils in northern Europe, Asia and North America. In Poland, it is classified as an endangered species not only due to the drainage of wetlands, but also to the excessive collection of this repellent plant by human. The other valuable biological properties of R. tomentosum, used for years in folk medicine, include anti-inflammatory, analgesic and anti-microbial activity, conditioned by the essential oil content. Taking into account the importance of biodiversity and the potential therapeutic application, it was decided to establish, for the first time, the micropropagation protocol for R. tomentosum, for ex-situ conservation of this endangered species as well as to obtain the continuous source of in vivo and in-vitro plant material for further studies. This object was achieved by the selection of the explant and the media, which were modified within the scope of mineral composition, sugar content, pH and the growth regulators. As a result, the four-stage micropropagation protocol for R. tomentosum was specified, including shoot multiplication, elongation, rooting and ex-vitro adaptation. The genetic identification of the examined species and the compatibility of progeny plants with maternal ones was tested with molecular biology methods. Moreover, during the research process, the chemical composition of initial and regenerated plant and in vitro shoots was controlled in terms of volatile fraction by phytochemical analysis (GC and TLC methods). The correctness of the micropropagation procedure was confirmed by both types of studies.Keywords: ex situ conservation, Ledum palustre, micropropagation, Rhododendron tomentosum
Procedia PDF Downloads 4903671 The Effects of Various Storage Scenarios on the Viability of Rooibos Tea Characteristically Used for Research
Authors: Daniella L. Pereira, Emeliana G. Imperial, Ingrid Webster, Ian Wiid, Hans Strijdom, Nireshni Chellan, Sanet H. Kotzé
Abstract:
Rooibos (Aspalathus linearis) is a shrub-like bush native to the Western Cape of South Africa and commonly consumed as a herbal tea. Interest on the anti-oxidant capabilities of the tea have risen based on anecdotal evidence. Rooibos contains polyphenols that contribute to the overall antioxidant capacity of the tea. These polyphenols have been reported to attenuate the effects of oxidative stress in biological systems. The bioavailability of these compounds is compromised when exposed to light, pH fluctuations, and oxidation. It is crucial to evaluate whether the polyphenols in a typical rooibos solution remain constant over time when administered to rats in a research environment. This study aimed to determine the effects of various storage scenarios on the phenolic composition of rooibos tea commonly administered to rodents in experimental studies. A standardised aqueous solution of rooibos tea was filtered and divided into three samples namely fresh, refrigerated, and frozen. Samples were stored in air tight, light excluding bottles. Refrigerated samples were stored at 4°C for seven days. Frozen samples were stored for fourteen days at -20°C. Each sample consisted of two subgroups labeled day 1 and day 7. Teas marked day 7 of each group were kept in air tight, light protected bottles at room temperature for an additional week. All samples (n=6) were freeze-dried and underwent polyphenol characterization using liquid chromatography-mass spectrometry. The phenolic composition remained constant throughout all groups. This indicates that rooibos tea can be safely stored at the above conditions without compromising the phenolic viability of the tea typically used for research purposes.Keywords: Aspalathus linearis, experimental studies, polyphenols, storage
Procedia PDF Downloads 2263670 Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size
Authors: Carola Cappa
Abstract:
Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications.Keywords: foaming properties, foam stability, foam texture, particle size, acidification, aquafaba
Procedia PDF Downloads 723669 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine
Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi
Abstract:
Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer
Procedia PDF Downloads 4233668 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine
Authors: Ghulam Murshid
Abstract:
Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.Keywords: amino acids, co2, global warming, solubility
Procedia PDF Downloads 4143667 Neuroinflammation in Late-Life Depression: The Role of Glial Cells
Authors: Chaomeng Liu, Li Li, Xiao Wang, Li Ren, Qinge Zhang
Abstract:
Late-life depression (LLD) is a prevalent mental disorder among the elderly, frequently accompanied by significant cognitive decline, and has emerged as a worldwide public health concern. Microglia, astrocytes, and peripheral immune cells play pivotal roles in regulating inflammatory responses within the central nervous system (CNS) across diverse cerebral disorders. This review commences with the clinical research findings and accentuates the recent advancements pertaining to microglia and astrocytes in the neuroinflammation process of LLD. The reciprocal communication network between the CNS and immune system is of paramount importance in the pathogenesis of depression and cognitive decline. Stress-induced downregulation of tight and gap junction proteins in the brain results in increased blood-brain barrier permeability and impaired astrocyte function. Concurrently, activated microglia release inflammatory mediators, initiating the kynurenine metabolic pathway and exacerbating the quinolinic acid/kynurenic acid imbalance. Moreover, the balance between Th17 and Treg cells is implicated in the preservation of immune homeostasis within the cerebral milieu of individuals suffering from LLD. The ultimate objective of this review is to present future strategies for the management and treatment of LLD, informed by the most recent advancements in research, with the aim of averting or postponing the onset of AD.Keywords: neuroinflammation, late-life depression, microglia, astrocytes, central nervous system, blood-brain barrier, Kynurenine pathway
Procedia PDF Downloads 443666 Study on Preparation and Storage of Jam Incorporating Carrots (Dacus Carrota), Banana (Musa Acuminata) and Lime (Citrus Aurantifola)
Authors: K. Premakumar, D. S. Rushani, H. N. Hettiarachchi
Abstract:
The production and consumption of preserved foods have gained much importance due to globalization, and they provide a health benefit apart from the basic nutritional functions. Therefore, a study was conducted to develop a jam incorporating carrot, banana, and lime. Considering the findings of several preliminary studies, five formulations of the jam were prepared by blending different percentages of carrot and banana including control (where the only carrot was added). The freshly prepared formulations were subjected to physicochemical and sensory analysis.Physico-Chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content, total sugar and non-reducing sugar and organoleptic qualities such as colour, aroma, taste, spread ability and overall acceptability and microbial analysis (total plate count) were analyzed after formulations. Physico-Chemical Analysis of the freshly prepared Carrot –Banana Blend jam showed increasing trend in titrable acidity (from 0.8 to 0.96, as % of citric acid), TSS (from 70.05 to 67.5 0Brix), ascorbic acid content (from 0.83 to 11.465 mg/100ml), reducing sugar (from 15.64 to 20.553%) with increase in carrot pulp from 50 to 100%. pH, total sugar, and non-reducing sugar were also reduced when carrot concentration is increased. Five points hedonic scale was used to evaluate the organoleptic characters. According to Duncan's Multiple Range Test, the mean scores for all the assessed sensory characters varied significantly (p<0.05) in the freshly made carrot-banana blend jam formulations. Based on the physicochemical and sensory analysis, the most preferred carrot: banana combinations of 50:50, 100:0 and 80:20 (T1, T2, and T5) were selected for storage studies.The formulations were stored at 300 °C room temperature and 70-75% of RH for 12 weeks. The physicochemical characteristics were measured at two weeks interval during storage. The decreasing trends in pH and ascorbic acid and an increasing trend in TSS, titrable acidity, total sugar, reducing sugar and non-reducing sugar were noted with advancement of storage periods of 12 weeks. The results of the chemical analysis showed that there were significance differences (p<0.05) between the tested formulations. Sensory evaluation was done for carrot –banana blends jam after a period of 12 weeks through a panel of 16 semi-trained panelists. The sensory analysis showed that there were significant differences (p<0.05) for organoleptic characters between carrot-banana blend jam formulations. The highest overall acceptability was observed in formulation with 80% carrot and 20% banana pulp. Microbiological Analysis was carried out on the day of preparation, 1 month, 2 months and 3 months after preparation. No bacterial growth was observed in the freshly made carrot -banana blend jam. There were no counts of yeast and moulds and coliforms in all treatments after the heat treatments and during the storage period. Only the bacterial counts (Total Plate Counts) were observed after three months of storage below the critical level, and all formulations were microbiologically safe for consumption. Based on the results of physio-chemical characteristics, sensory attributes, and microbial test, the carrot –banana blend jam with 80% carrot and 20% banana (T2) was selected as best formulation and could be stored up to 12 weeks without any significant changes in the quality characteristics.Keywords: formulations, physicochemical parameters, microbiological analysis, sensory evaluation
Procedia PDF Downloads 2033665 Agricultural Land Suitability Analysis of Kampe-Omi Irrigation Scheme Using Remote Sensing and Geographic Information System
Authors: Olalekan Sunday Alabi, Titus Adeyemi Alonge, Olumuyiwa Idowu Ojo
Abstract:
Agricultural land suitability analysis and mapping play an imperative role for sustainable utilization of scarce physical land resources. The objective of this study was to prepare spatial database of physical land resources for irrigated agriculture and to assess land suitability for irrigation and developing suitable area map of the study area. The study was conducted at Kampe-Omi irrigation scheme located at Yagba West Local Government Area of Kogi State, Nigeria. Temperature and rainfall data of the study area were collected for 10 consecutive years (2005-2014). Geographic Information System (GIS) techniques were used to develop irrigation land suitability map of the study area. Attribute parameters such as the slope, soil properties, topography of the study area were used for the analysis. The available data were arranged, proximity analysis of Arc-GIS was made, and this resulted into five mapping units. The final agricultural land suitability map of the study area was derived after overlay analysis. Based on soil composition, slope, soil properties and topography, it was concluded that; Kampe-Omi has rich sandy loam soil, which is viable for agricultural purpose, the soil composition is made up of 60% sand and 40% loam. The land-use pattern map of Kampe-Omi has vegetal area and water-bodies covering 55.6% and 19.3% of the total assessed area respectively. The landform of Kampe-Omi is made up of 41.2% lowlands, 37.5% normal lands and 21.3% highlands. Kampe-Omi is adequately suitable for agricultural purpose while an extra of 20.2% of the area is highly suitable for agricultural purpose making 72.6% while 18.7% of the area is slightly suitable.Keywords: remote sensing, GIS, Kampe–Omi, land suitability, mapping
Procedia PDF Downloads 2113664 Development Of Diabetes Mellitus In Overweight People
Authors: Ashiraliyev SHavkat
Abstract:
Relevance of the topic: Diabetes mellitus in overweight people development and absence of treatment measures. Objective: to give patients the correct instructions on proper nutrition, to organize a network of preventive and therapeutic measures. Materials and methods: Multidisciplinary Tashkent Medical Academy. As a result of objective observations in patients who applied to the clinic, 28 11 overweight patients had to type 2 diabetes. Diabetesmellituswasdiagnosed. Results: 11.5 mmol / L on an empty stomach in the morning. EDT yes. Pathogenesis: fat content in the diet of patients with diabetes mellitus. Carbohydrate foods make up 60%. Eating disorders and physical inactivity As a result, the accumulation of glucose in the form of fat increases, and this is constantly in the blood, which led to an increase in the number of fatty acids. Clinic: Frequent fasting in 11 patients (hypothalamus). Associated with glucose deficiency), drinking 8-9 liters of water per day of blood in 7 people Systolic pressure 150 diastolic pressures 100. Sensation of ants in 3 people and poor eyesight in 5 people. Conclusion: Explain to patients that nutritional guidelines should be followed. Assign active movement in accordance with the energy entering the body.Keywords: mellitus, diabetes, pathogenesis, clinic
Procedia PDF Downloads 903663 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy
Authors: Jian Yu
Abstract:
Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process
Procedia PDF Downloads 1893662 Study on Shelf Life and Textural Properties of Minimal Processed Mixed Fruits
Authors: Kaavya Rathnakumar
Abstract:
Minimally processed fruits have the attributes of convenience and fresh like quality. In minimally processed products, the cells of the tissue are alive, and the essential nutrients and flavours are retained. Some of the procedures include washing, trimming, sorting, cutting, slicing and shredding. Fruits such as pineapple and guava were taken for the study of textural properties for a period of five days. After the performance of various unit operations 50g cubes of pineapple and guava has been weighed. For determining the textural properties, samples were taken in which set of 12 samples were treated by using 1% citric acid solution and dried for 5 minutes the remaining set of 12 samples were untreated. In set of treated samples 6 were vacuum packed and stored in the refrigerator, and the other sample was normally stored. For untreated samples was done in a similar way. In texture profile analysis the force required for 1cm penetration of 2mm cylindrical needle inside the fruits were recorded for all packages. It was observed that guava the fresh sample had a force of penetration of 3250mm and as the days increased the force decreased to 357.4 mm for vacuum packed refrigerated storage. In the case of pineapple, the force of penetration of the fresh sample was 2325mm which was decreased to 26.3mm on the fourth day and very low at the fifth day for vacuum packed refrigerated storage. But in case of untreated samples, the fruits were spoiled may be because of no pre-treatment and packaging. Comparatively, it was found that vacuum packed refrigerated samples had higher shelf life than normal packed samples in ambient conditions.Keywords: 1% citric acid solution, normal packed, refrigerated storage, vacuum packed
Procedia PDF Downloads 193