Search results for: ultraviolet functionalization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 373

Search results for: ultraviolet functionalization

193 Numerical Simulation of Solar Reactor for Water Disinfection

Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik

Abstract:

Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.

Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent

Procedia PDF Downloads 350
192 Physicochemical and Antioxidative Characteristics of Black Bean Protein Hydrolysates Obtained from Different Enzymes

Authors: Zhaojun Zheng, Yuanfa Liu, Jiaxin Li, Jinwei Li, Yong-jiang Xu, Chen Cao

Abstract:

Black bean is an excellent protein source for preparing hydrolysates, which attract much attention due to their biological activity. The objective of this study was to characterize the physicochemical and antioxidant properties of black bean protein, hydrolyzed by ficin, bromelain or alcalase until 300 min of hydrolysis. Results showed that bromelain and alcalase hydrolysates possessed a higher degree of hydrolysis (DH) than that of ficin, thereby presenting different ultraviolet absorption, fluorescence intensity, and circular dichroism. Moreover, all hydrolysates possessed the capacity to scavenge DPPH radical with the lowest IC₅₀ of 21.11 µg/mL, as well as to chelate ferrous ion (Fe²⁺) with the IC₅₀ values ranging from 6.82 to 30.68 µg/mL. Intriguingly, the oxidation of linoleic acid, sunflower oil, and sunflower oil-in-water emulsion was remarkedly retarded by the three selected protein hydrolysates, especially by bromelain-treated protein hydrolysate, which might attribute to their high hydrophobicity and emulsifying properties. These findings can provide strong support for black bean protein hydrolysates to be employed in food products acting as natural antioxidant alternatives.

Keywords: antioxidant activity, black bean protein hydrolysate, emulsion physicochemical properties, sunflower oil

Procedia PDF Downloads 137
191 Effectiveness of the Resistance to Irradiance Test on Sunglasses Standards

Authors: Mauro Masili, Liliane Ventura

Abstract:

It is still controversial in the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on reports in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-hour radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits against UV radiation. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.

Keywords: ISO 12312-1, solar simulator, sunglasses standards, UV protection

Procedia PDF Downloads 197
190 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance

Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na

Abstract:

Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA

Procedia PDF Downloads 320
189 Efficacy of TiO₂ in the Removal of an Acid Dye by Photo Catalytic Degradation

Authors: Laila Mahtout, Kerami Ahmed, Rabhi Souhila

Abstract:

The objective of this work is to reduce the impact on the environment of an acid dye (Black Eriochrome T) using catalytic photo-degradation in the presence of the semiconductor powder (TiO₂) previously characterized. A series of tests have been carried out in order to demonstrate the influence of certain parameters on the degree of dye degradation by titanium dioxide in the presence of UV rays, such as contact time, the powder mass and the pH of the solution. X-ray diffraction analysis of the powder showed that the anatase structure is predominant and the rutile phase is presented by peaks of low intensity. The various chemical groups which characterize the presence of the bands corresponding to the anatase and rutile form and other chemical functions have been detected by the Fourier Transform Infrared spectroscopy. The photo degradation of the NET by TiO₂ is very interesting because it gives encouraging results. The study of photo-degradation at different concentrations of the dye showed that the lower concentrations give better removal rates. The degree of degradation of the dye increases with increasing pH; it reaches the maximum value at pH = 9. The ideal mass of TiO₂ which gives the high removal rate is 1.2 g/l. Thermal treatment of TiO₂ with the addition of CuO with contents of 5%, 10%, and 15% respectively gives better results of degradation of the NET dye. The high percentage of elimination is observed at a CuO content of 15%.

Keywords: acid dye, ultraviolet rays, degradation, photocatalyse

Procedia PDF Downloads 194
188 Poly (Acrylonitrile-Co-Methylacrylate)/Poly N-Methyl Pyrrole and Pyrrole Nanocomposites

Authors: Fatma Zehra Engin Sagirli, Eyup Sabri Kayali, A. Sezai Sarac

Abstract:

In this study, Poly (acrylonitrile-co-methylacrylate)/N-Methyl Pyrrole and Pyrrole ([P(AN-co-MA)]-NMPy and [P(AN-co-MA)]-PPy) core–shell nanoparticles were obtained by in situ emulsion polymerization in the presence of Sodium dodecyl benzene sulfonate and sodium dodecyl sulfate (SDBS and SDS) by using ammonium per sulphate in the aqueous medium. The spectroscopic characterizations during the formation of nanocomposites were studied using Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, ultraviolet–visible spectrophotometer (Uv-Vis). Electrical conductivity of the emulsion solution was measured by Conductivity Meter from aqueous sample solution. Also, yield of the powder nanocomposites was measured. SDBS and SDS used for investigation of surfactant effect on yield, electrical conductivity and polymerization process. Determination of polymerization yield, (FTIR-ATR) and (Uv-Vis) prove that the SDBS surfactant become more incorporated into the conducting polymers and there is strong interaction between the [P(AN-co-MA)]-PPy derivatives which prepared by these surfactants. The similar inclusion of SDS into conducting polymers was not observed, there is a remarkable difference at nanocomposites which prepared with SDS.

Keywords: nanocomposites, core-shell, pyrole, surfactant

Procedia PDF Downloads 403
187 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning

Authors: ChoLiang Chung, YuMin Chen

Abstract:

C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.

Keywords: carbon, TiO2, chitosan, electrospinning

Procedia PDF Downloads 256
186 Characterization of Urban Ozone Pollution in Summer and Analysis of Influencing Factors

Authors: Gao Fangting

Abstract:

Ozone acts as an atmospheric shield, protecting organisms from ultraviolet radiation by absorbing it. Currently, a large amount of international environmental epidemiology has confirmed that short- and long-term exposure to ozone has significant effects on population health. Near-surface ozone, as a secondary pollutant in the atmosphere, not only negatively affects the production activities of living organisms but also damages ecosystems and affects climate change to some extent. In this paper, using the hour-by-hour ozone observations given by ground meteorological stations in four cities, namely Beijing, Kunming, Xining, and Guangzhou, from 2015 to 2017, the number of days of exceedance and the long-term change characteristics of ozone are analyzed by using the time series analysis method. On this basis, the effects of changes in meteorological conditions on ozone concentration were discussed in conjunction with the same period of meteorological data, and the similarities and differences of near-surface ozone in different cities were comparatively analyzed to establish a relevant quantitative model of near-surface ozone. This study found that ozone concentrations were highest during the summer months of the year, that ozone concentrations were strongly correlated with meteorological conditions, and that none of the four cities had ozone concentrations that reached the threshold for causing disease.

Keywords: ozone, meteorological conditions, pollution, health

Procedia PDF Downloads 30
185 Templating Copper on Polymer/DNA Hybrid Nanowires

Authors: Mahdi Almaky, Reda Hassanin, Benjamin Horrocks, Andrew Houlton

Abstract:

DNA-templated poly(N-substituted pyrrole)bipyridinium nanowires were synthesised at room temperature using the chemical oxidation method. The resulting CPs/DNA hybrids have been characterised using electronic and vibrational spectroscopic methods especially Ultraviolet-Visible (UV-Vis) spectroscopy and FTIR spectroscpy. The nanowires morphology was characterised using Atomic Force Microscopy (AFM). The electrical properties of the prepared nanowires were characterised using Electrostatic Force Microscopy (EFM), and measured using conductive AFM (c-AFM) and two terminal I/V technique, where the temperature dependence of the conductivity was probed. The conductivities of the prepared CPs/DNA nanowires are generally lower than PPy/DNA nanowires showingthe large effect on N-alkylation in decreasing the conductivity of the polymer, butthese are higher than the conductivity of their corresponding bulk films.This enhancement in conductivity could be attributed to the ordering of the polymer chains on DNA during the templating process. The prepared CPs/DNA nanowires were used as templates for the growth of copper nanowires at room temperature using aqueous solution of Cu(NO3)2as a source of Cu2+ and ascorbic acid as reducing agent. AFM images showed that these nanowires were uniform and continuous compared to copper nanowires prepared using the templating method directly onto DNA. Electrical characterization of the nanowires by c AFM revealed slight improvement in conductivity of these nanowires (Cu-CPs/DNA) compared to CPs/DNA nanowires before metallisation.

Keywords: templating, copper nanowires, polymer/DNA hybrid, chemical oxidation method

Procedia PDF Downloads 363
184 Effect of Alkalinity of Water on the Aggregation of Colloidal Silver Nanoparticles

Authors: Fedda Y. Alzoubi, Ihsan A. Aljarrah

Abstract:

Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in different applications, especially in biomedical applications. Samples of different alkaline water were prepared in order to study the effect of alkalinity of water on the optical properties, size, and morphology of colloidal AgNPs prepared according to the chemical reduction method using the prepared water samples. Ultraviolet-Visible spectrophotometer, Zeta-sizer, and Scanning electron microscope (SEM) have been utilized to carry out this study. Absorption spectra AgNPs in different alkaline water show a surface Plasmon resonance (SPR) peak at the wavelength of 420 nm. The position of this peak is sensitive to the shape of the particles, and in our case, it indicates that the particles are spherical. As the alkalinity increases, the intensity of the SPR peak decreases, indicating the aggregation of particles. Zeta-sizer measurements show that the average diameter for AgNPs in pure water is found to be 53.51 nm, and this value increases as the alkalinity increases. Zeta potential values of samples show that the negatively coated particles are stable in the solution. SEM images insure the spherical shape of the prepared nanoparticles and show that as the alkalinity increases the particles aggregate into larger particles.

Keywords: aggregation, alkalinity, colloid, nanoparticle

Procedia PDF Downloads 126
183 Mechanistic Structural Insights into the UV Induced Apoptosis via Bcl-2 proteins

Authors: Akash Bera, Suraj Singh, Jacinta Dsouza, Ramakrishna V. Hosur, Pushpa Mishra

Abstract:

Ultraviolet C (UVC) radiation induces apoptosis in mammalian cells and it is suggested that the mechanism by which this occurs is the mitochondrial pathway of apoptosis through the release of cytochrome c from the mitochondria into the cytosol. The Bcl-2 family of proteins pro-and anti-apoptotic is the regulators of the mitochondrial pathway of apoptosis. Upon UVC irradiation, the proliferation of apoptosis is enhanced through the downregulation of the anti-apoptotic protein Bcl-xl and up-regulation of Bax. Although the participation of the Bcl-2 family of proteins in apoptosis appears responsive to UVC radiation, to the author's best knowledge, it is unknown how the structure and, effectively, the function of these proteins are directly impacted by UVC exposure. In this background, we present here a structural rationale for the effect of UVC irradiation in restoring apoptosis using two of the relevant proteins, namely, Bid-FL and Bcl-xl ΔC, whose solution structures have been reported previously. Using a variety of biophysical tools such as circular dichroism, fluorescence and NMR spectroscopy, we show that following UVC irradiation, the structures of Bcl-xlΔC and Bid-FL are irreversibly altered. Bcl-xLΔC is found to be more sensitive to UV exposure than Bid-FL. From the NMR data, dramatic structural perturbations (α-helix to β-sheet) are seen to occur in the BH3 binding region, a crucial segment of Bcl-xlΔC which impacts the efficacy of its interactions with pro-apoptotic tBid. These results explain the regulation of apoptosis by UVC irradiation. Our results on irradiation dosage dependence of the structural changes have therapeutic potential for the treatment of cancer.

Keywords: Bid, Bcl-xl, UVC, apoptosis

Procedia PDF Downloads 127
182 Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation

Authors: Shinhao Yang, Hsiao-Chien Huang, Chin-Hsiang Luo

Abstract:

The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2).

Keywords: fluorochrome, deposition, shielding effects, digital image processing, leakage ratio, personal protective equipment

Procedia PDF Downloads 322
181 Synthesis and Characterization of an Aerogel Based on Graphene Oxide and Polyethylene Glycol

Authors: Javiera Poblete, Fernando Gajardo, Katherina Fernandez

Abstract:

Graphene, and its derivatives such as graphene oxide (GO), are emerging nanoscopic materials, with interesting physical and chemical properties. From them, it is possible to develop three-dimensional macrostructures, such as aerogels, which are characterized by a low density, high porosity, and large surface area, having a promising structure for the development of materials. The use of GO as a precursor of these structures provides a wide variety of materials, which can be developed as a result of the functionalization of their oxygenated groups, with specific compounds such as polyethylene glycol (PEG). The synthesis of aerogels of GO-PEG for non-covalent interactions has not yet been widely reported, being of interest due to its feasible escalation and economic viability. Thus, this work aims to develop a non-covalently functionalized GO-PEG aerogels and characterize them physicochemically. In order to get this, the GO was synthesized from the modified hummers method and it was functionalized with the PEG by polymer-assisted GO gelation (crosslinker). The gelation was obtained for GO solutions (10 mg/mL) with the incorporation of PEG in different proportions by weight. The hydrogel resulting from the reaction was subsequently lyophilized, to obtain the respective aerogel. The material obtained was chemically characterized by analysis of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD), and its morphology by scanning electron microscopy (SEM) images; as well as water absorption tests. The results obtained showed the formation of a non-covalent aerogel (FTIR), whose structure was highly porous (SEM) and with a water absorption values greater than 50% g/g. Thus, a methodology of synthesis for GO-PEG was developed and validated.

Keywords: aerogel, graphene oxide, polyethylene glycol, synthesis

Procedia PDF Downloads 126
180 Synthesis of Modified Cellulose for the Capture of Uranyl Ions from Aqueous Solutions

Authors: Claudia Vergara, Oscar Valdes, Jaime Tapia, Leonardo Santos

Abstract:

The poly(amidoamine) dendrimers (PAMAM) are a class of material introduced by D. Tomalia. Modifications of the PAMAM dendrimer with several functional groups have attracted the attention for new interesting properties and new applications in many fields such as chemistry, physics, biology, and medicine. However, in the last few years, the use of dendrimers in environmental applications has increased due to pollution concerns. In this contribution, we report the synthesis of three new PAMAM derivates modified with asparagine aminoacid supported in cellulose: PG0-Asn (PAMAM-asparagine), PG0-Asn-Trt (with trityl group) and PG0-Asn-Boc-Trt (with tert-butyl oxycarbonyl group). The functionalization of generation 0 PAMAM dendrimer was carried out by amidation reaction by using an EDC/HOBt protocol. In a second step, functionalized dendrimer was covalently supported to the cellulose surface and used to study the capture of uranyl ions from aqueous solution by fluorescence spectroscopy. The structure and purity of the desired products were confirmed by conventional techniques such as FT-IR, MALDI, elemental analysis, and ESI-MS. Batch experiments were carried out to determine the affinity of uranyl ions with the dendrimer in aqueous solution. Firstly, the optimal conditions for uranyl capture were obtained, where the optimum pH for the removal was 6, the contact time was 4 hours, the initial concentration of uranyl was 100 ppm, and the amount of the adsorbent to be used was 2.5 mg. PAMAM significantly increased the capture of uranyl ions with respect to cellulose as the starting substrate, reaching 94.8% of capture (PG0), followed by 91.2% corresponding to PG0-Asn-Trt, then 70.3% PG0-Asn and 24.2% PG0-Asn-Boc-Trt. These results show that the PAMAM dendrimer is a good option to remove uranyl ions from aqueous solutions.

Keywords: asparagine, cellulose, PAMAM dendrimer, uranyl ions

Procedia PDF Downloads 139
179 Research on the Optical Properties and Polymerization Environment of Broadband Reflective Films in the Visible Region

Authors: Z. Miao, Y. Chu, Y. Zhang

Abstract:

The unique cholesteric phase liquid crystals obtained by mixing nematic liquid crystals with chiral dopants have gained valuable applications in the display field for their selective reflection and circular dichroism properties. The periodic arrangement of the helical structure of cholesteric liquid crystals makes it possible to produce Bragg reflection of circularly polarized light irradiated perpendicularly to the liquid crystals and, therefore, to acquire semi- or fully reflective surfaces or films. If the polymer-liquid crystal composites are combined with polymeric monomers, commercialized reflective broadband films can be fabricated. In this study, the polymer-liquid crystal composites reflecting visible light region (wavelength centered at 550 nm) were studied to analyze the effects of AC electric field at different voltages and frequencies on the optical texture of the composites, as well as the effects of polymerization temperature and ultraviolet (UV) intensity on the polymerization reaction and reflection bandwidth. The optimal sample was finally obtained at 100Hz, 120V, 30℃, 1.00 mW/cm², which provides a research suggestion to solve the influencing factors of visible light reflection bandwidths.

Keywords: cholesteric liquid crystal, reflection bandwidths, negative dielectric anisotropy, planar texture

Procedia PDF Downloads 181
178 Micropillar-Assisted Electric Field Enhancement for High-Efficiency Inactivation of Bacteria

Authors: Sanam Pudasaini, A. T. K. Perera, Ahmed Syed Shaheer Uddin, Sum Huan Ng, Chun Yang

Abstract:

Development of high-efficiency and environment friendly bacterial inactivation methods is of great importance for preventing waterborne diseases which are one of the leading causes of death in the world. Traditional bacterial inactivation methods (e.g., ultraviolet radiation and chlorination) have several limitations such as longer treatment time, formation of toxic byproducts, bacterial regrowth, etc. Recently, an electroporation-based inactivation method was introduced as a substitute. Here, an electroporation-based continuous flow microfluidic device equipped with an array of micropillars is developed, and the device achieved high bacterial inactivation performance ( > 99.9%) within a short exposure time ( < 1 s). More than 99.9% reduction of Escherichia coli bacteria was obtained for the flow rate of 1 mL/hr, and no regrowth of bacteria was observed. Images from scanning electron microscope confirmed the formation of electroporation-induced nano-pore within the cell membrane. Through numerical simulation, it has been shown that sufficiently large electric field strength (3 kV/cm), required for bacterial electroporation, were generated using PDMS micropillars for an applied voltage of 300 V. Further, in this method of inactivation, there is no involvement of chemicals and the formation of harmful by-products is also minimum.

Keywords: electroporation, high-efficiency, inactivation, microfluidics, micropillar

Procedia PDF Downloads 180
177 Analytical Derivative: Importance on Environment and Water Analysis/Cycle

Authors: Adesoji Sodeinde

Abstract:

Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light].

Keywords: analytical derivative, environment, water analysis, chemical/biochemical analysis

Procedia PDF Downloads 337
176 Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal

Authors: Xiangxu Chai, Bin Feng, Ping Li, Deyan Zhu, Liquan Wang, Guanzhong Wang, Yukun Jing

Abstract:

In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well.

Keywords: fourth harmonic generation, laser induced damage, converging beam, DKDP crystal

Procedia PDF Downloads 230
175 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 371
174 Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates

Authors: Uchenna Sydney Mbamara, Bolu Olofinjana, Ezekiel Oladele B. Ajayi

Abstract:

Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction.

Keywords: undoped ZnO, precursor flow rate, OMCVD, thin films, surface texture, tribology

Procedia PDF Downloads 62
173 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: nanoscale materials, silver sulfide nanoparticles, nonlinear absorption, nonlinear scattering, optical limiting

Procedia PDF Downloads 396
172 Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils

Authors: Elad Arad, Raz Jelinek, Hanna Rapaport

Abstract:

Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications.

Keywords: titanium dioxide, amyloids, photothermal treatment, catechol, Congo-red

Procedia PDF Downloads 146
171 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles

Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.

Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots

Procedia PDF Downloads 84
170 Polyacrylates in Poly (Lactic Acid) Matrix, New Biobased Polymer Material

Authors: Irena Vuković-Kwiatkowska, Halina Kaczmarek

Abstract:

Poly (lactic acid) is well known polymer, often called green material because of its origin (renewable resources) and biodegradability. This biopolymer can be used in the packaging industry very often. Poor resistance to permeation of gases is the disadvantage of poly (lactic acid). The permeability of gases and vapor through the films applied for packages and bottles generally should be very low to prolong products shelf-life. We propose innovation method of PLA gas barrier modification using electromagnetic radiation in ultraviolet range. Poly (lactic acid) (PLA) and multifunctional acrylate monomers were mixed in different composition. Final films were obtained by photochemical reaction (photocrosslinking). We tested permeability to water vapor and carbon dioxide through these films. Also their resistance to UV radiation was also studied. The samples were conditioned in the activated sludge and in the natural soil to test their biodegradability. An innovative method of PLA modification allows to expand its usage, and can reduce the future costs of waste management what is the result of consuming such materials like PET and HDPE. Implementation of our material for packaging will contribute to the protection of the environment from the harmful effects of extremely difficult to biodegrade materials made from PET or other plastic

Keywords: interpenetrating polymer network, packaging films, photocrosslinking, polyacrylates dipentaerythritol pentaacrylate DPEPA, poly (lactic acid), polymer biodegradation

Procedia PDF Downloads 478
169 Radiation Emission from Ultra-Relativistic Plasma Electrons in Short-Pulse Laser Light Interactions

Authors: R. Ondarza-Rovira, T. J. M. Boyd

Abstract:

Intense femtosecond laser light incident on over-critical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterized by power-law decays Pm ~ m-p, where m denotes the harmonic order and p the spectral decay index. When the laser pulse is p-polarized, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay with p=8/3 to p=5/3, or below. In this work, appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using this numerical technique we further show that the emission radiated by electrons -that are relativistically accelerated by the laser field inside the plasma, after being expelled into vacuum, the so-called Brunel electrons is characterized not only by the plasma line but also by ultraviolet harmonic orders described by the 5/3 decay index. Results obtained from these simulations suggest that for ultra-relativistic light intensities, the spectral decay index is further reduced, with p now in the range 2/3 ≤ p ≤ 4/3. This reduction is indicative of a transition from the regime where Brunel-induced plasma radiation influences the spectrum to one dominated by bremsstrahlung emission from the Brunel electrons.

Keywords: ultra-relativistic, laser-plasma interactions, high-order harmonic emission, radiation, spectrum

Procedia PDF Downloads 464
168 Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films

Authors: P. Jayaram, Prasoon Prasannan, N. K. Deepak, P. P. Pradyumnan

Abstract:

Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films.

Keywords: PL, SEM, TCOs, thin films, XRD

Procedia PDF Downloads 238
167 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles

Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan

Abstract:

We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.

Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques

Procedia PDF Downloads 396
166 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 115
165 Magnetic Silica Nanoparticles as Viable Support for the Immobilization of Oxidative Enzymes

Authors: Y. Moldes-Diz, M. Gamallo, G. Eibes, C. Vazquez-Vazquez, G. Feijoo, J. M. Lema, M. T. Moreira

Abstract:

Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are excellent biocatalysts for biotechnological and environmental applications because of their high activity, selectivity, and specificity. Specifically, these characteristics allow them to perform the oxidation of recalcitrant compounds with simple requirements for the catalysis (presence of molecular oxygen). Nevertheless, the low stability under unfavorable conditions (pH, inactivating agents or temperature) and high production costs still limits their use for practical applications. Immobilization of enzymes has proven particularly valuable to avoid some of the aforementioned drawbacks. Magnetic nanoparticles (MNPs) have received increasing attention as carriers for enzyme immobilization since they can potentially provide an easy recovery of the biocatalyst from the reaction medium under an external magnetic field. In the present work, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were prepared, characterized and used for laccase immobilization by covalent binding. The synthesis of Fe3O4@SiO2 was performed in a two-step procedure: co-precipitation and reverse microemulsion. The influence of immobilization conditions: concentrations of the functionalization agent (3-aminopropyl-triethoxy-silane) and the cross-linker (glutaraldehyde) as well as the influence of pH, T or inactivating agents were evaluated. In general, immobilized laccase showed superior stability compared to that of free enzyme. The reusability of the biocatalyst was demonstrated in successive batch reactions, where enzyme activity was maintained above 65% after 8 cycles of oxidation of the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate).

Keywords: silica-coated magnetic nanoparticles, laccase, immobilization, regeneration

Procedia PDF Downloads 218
164 The Effect of Vitamin D Deficiency on Endothelial Function in Atherosclerosis Patients Living in Saudi Arabia

Authors: Wedad Azhar

Abstract:

Vitamin D is an essential fat-soluble vitamin that is required for the maintenance of good health. It is obtained either through exposure to sunlight (ultraviolet B radiation) or through dietary sources. The role of vitamin D is beyond bone health. Indeed, it plays a critical role in the immune system and a broad range of organ functions such as the cardiovascular system. Moreover, vitamin D plays a critical role in the endothelial function, which is one of the main indicators of atherosclerosis. This study is investigating the correlation between vitamin D status and endothelial function in preventing and treating atherosclerosis especially in country that has ample of sunshine but yet, Saudis from suffering from this issue vitamin D deficiency and insufficiency. Ninety participants from both genders and aged 40 to 60will be involved. The participants will be categorised into three groups: the control group will be healthy persons, patients at risk of developing atherosclerosis, patients formally diagnosed atherosclerosis. Half of the participants in each group should already have been taking vitamin D supplementations. Fasting blood samples will be taken from the participants for biochemical assays. Endothelial function will be assist by flow-mediated dilation of the brachial artery. Participants will be asked to complete a questionnaire on their social and economic status, education level, daily exposure to sunlight, smoking status, consumption of supplements and medication, and a food frequency of vitamin D intake. The data will be analysed using SPSS.

Keywords: atherosclerosis, endothelial function, nutrition, vitamin D

Procedia PDF Downloads 294